随着 AIGC 热潮的兴起,越来越多的 AI 工具应用开始出现,包括 OpenAI ChatGPT、Github Copilot 等,这些工具正在改变着传统的工作生产方式。
前排提示,文末有AI大模型CSDN独家籽料包哦!
在 2023 年 3 月的一次发布会中,OpenAI 甚至展示了直接通过识别原型草图,智能生成网站代码的案例。
一时间,“程序员要失业了”类似言论甚嚣尘上。
但技术革命改变的只是工具,只有持续地学习新工具,才能不被时代所抛弃。
打不过就要加入,程序员要想保住自己的“饭碗”就需要开始使用 AI 工具提升自己工作效率,甚至直接参与到 AI 工具的开发中,完成个人能力升级。
AI工具使用痛点和解决方案
当下 AI 工具能力一类来自 AI 头部公司提供的通用能力,如 ChatGPT、 Copilot等,一类来自社区的开源生态,如 LangChain、AutoGPT 等。
前者功能稳定,但主要面向通用场景,缺少针对实际工作场景的定制化能力,如不支持基于公司内部文档解答问题等,甚至还有泄露公司内部信息的隐患。
后者扩展性强,可私有部署控制,但如果要完美契合当前团队工作流,其定制成本又特别高昂,难以在人力不足的中小型团队落地。
因此,有机地将头部 AI 公司的通用能力和社区开源生态进行结合,取长补短、灵活定制,才是长期的最佳策略。
下面笔者以 CLI 智能提示助手的定制化为例,讲解如何低成本地实现这种结合。
CLI 智能提示助手实践
CLI 智能提示助手是一个命令行终端工具,支持用户用自然语言描述想做的事情,比如统计查找重复文件等,然后回复建议的 CLI 命令。这类工具开源社区已有多个实现,为方便展示,我们选取其中的 Python 技术栈版本 ricklamers/shell-ai,使用效果如下:
其开源源码核心部分 shell_ai/main.py 比较简单(只有两百多行)。检查后便不难发现他的底层是通过如下提示词模板定制 OpenAI 通用模型 API 角色设定的:
1. SystemMessage.content='You are an expert at using shell commands.` ``I need you to provide a response in the format `{"command": "your_shell_command_here"}`.`` `The system the shell command will be executed on is Darwin 22.1.0.` `Only provide a single executable line of shell code as the value for the "command" key.``Never output any text outside the JSON structure. The command will be directly executed in a shell.``For example, if I ask to display the message \'Hello, World!\', you should respond with ```json\n{"command": "echo \'Hello, World!\'"}```.``Between [], these are the last 1500 tokens from the previous command\'s output, you can use them as context: [None], if it\'s None, don\'t take it into consideration.'` `2. HumanMessage.content="Here's what I'm trying to do: run 统计查找重复文件" # 这里注入用户输入
这个提示词中通过 SystemMessage 限定了 AI 机器人的身份背景和输入输出格式,同时给出了系统背景信息,如上文给出的是 MacOS 背景设定。
OpenAI API 在收到上述提示词后,将会基于大模型的历史训练语料中查找能匹配目标需求的 MacOS 系统命令,并返回给用户进行选择。
而程序员日常工作使用的命令常常是公司内定制的工具,不可能存在于 OpenAI 的历史训练语料中。
这就是前文第二节提到的落地痛点,因此需要将 OpenAI API 能力和开源工具能力有机结合,以扩展支持定制化的场景诉求。
但如何让 AI 学会公司内部工具的使用方法呢?
举个例子,公司内部有个专用命令,会自动汇总个人的开发工作信息,并自动生成每周报告。我们假设其使用文档如下:
显然,my_wr_gen 这个命令只存在于公司内部系统,OpenAI 和 shell-ai 都完全不知晓它的功能和使用方式。因此,当我们调用 shell-ai 问它如何生成周报时,它完全不会回答任何 my_wr_gen 相关信息,如下图所示:
针对这一问题,我们可以在公司内私域部署 Dify 服务,以低成本地实现一个基于私域知识信息的大语言模型 API。
Dify 底层的私有部署、文本分割和嵌入等技术能保障公司私域信息的安全。具体部署流程参考官网 docker 部署和源码部署章节,本文暂不累述。通过Dify 平台,我们可以配置出一个智能对话机器人 API,并将其绑定上文的 my_wr_gen 使用文档。具体步骤如下:
1、上传知识库
首先完成知识库上传:
①打开Dify 顶部【知识库】功能;
②点击【添加文件】将上面提到的使用文档文件上传上去。
Dify 平台默认支持多种文件格式,笔者建议优先使用 Markdown 文件类型。
2、创建和初始化对话机器人
点击顶部【工作室】功能页面创建一个对话类型机器人,然后分三步完成机器人的初始化设置:
①打开左侧【编排】设置页面;
②在【上下文】中添加刚才创建的知识库,实现知识绑定;
③在【提示词】中补充 CLI 助手角色设置如下图所示,笔者在提示词中约束了机器人的身份设定,并要求其根据上下文和用户输入查询给出 CLI 命令建议。
其中这里的变量“query”会用于承载后面 API 请求中的用户输入信息。
3、发布 API
配置完成后点击发布即可获得一个外网可以访问的大语言模型 API。
点击左侧【访问 API】 即可看到所有可用 API 类型,我们只需要使用其中的【发送对话消息】 API,如下图所示:
4、扩展 shell-ai 核心代码支持 Dify API
那么接下来,只需要使用这个 API 替换原来 shell-ai 中对 OpenAI API 的调用,即可让 shell-ai 了解 my_wr_gen 这个私有命令的用法。
由于 Dify 本身 API 接口定义和 OpenAI 完全不同,我们需要在 shell-ai 的源码中进行输入输出格式的适配。
具体可以分为以下步骤:
①增加 Dify API 类型。 检查 shell-ai/main.py 源码,可以发现这一工具每次调用都会自动加载 ~/.config/shell-ai/config.json 文件中的环境配置(MacOS 下为此地址,其他系统可能有所变化)。其中有一个环境配置字段为 OPENAI_API_TYPE 用于判断使用什么类型的 OpenAI 接口,默认支持 openai 和 azure 两种设置。那我们就在这里扩展支持 Dify 的 API 类型。在原来代码的基础上,我们先增加以下代码:
1. OPENAI_API_TYPE = os.environ.get("OPENAI_API_TYPE", "openai")` `3. OPENAI_API_VERSION = os.environ.get("OPENAI_API_VERSION", "2023-05-15")` `4. if OPENAI_API_TYPE not in OpenAIOptions.__members__ and OPENAI_API_TYPE != "dify": # 新增 dify 类型校验` `5. print(` `6. f"Your OPENAI_API_TYPE is not valid. Please choose one of {OpenAIOptions.__members__}"` `7. )` `8. sys.exit(1)` `9.` `10. # ... 省略部分无关代码` `11.` `12. if OPENAI_API_TYPE == "openai":` `13. chat = ChatOpenAI(` `14. model_name=OPENAI_MODEL,` `15. n=SHAI_SUGGESTION_COUNT,` `16. openai_api_base=OPENAI_API_BASE,` `17. openai_organization=OPENAI_ORGANIZATION,` `18. openai_proxy=OPENAI_PROXY,` `19. )` `20. if OPENAI_API_TYPE == "azure":` `21. chat = AzureChatOpenAI(` `22. n=SHAI_SUGGESTION_COUNT,` `23. openai_api_base=AZURE_API_BASE,` `24. openai_api_version=OPENAI_API_VERSION,` `25. deployment_name=AZURE_DEPLOYMENT_NAME,` `26. openai_api_key=os.environ.get("OPENAI_API_KEY"),` `27. openai_api_type="azure",` `28. temperature=0,` `29. )` `30. if OPENAI_API_TYPE == "dify":` `31. chat = DifyChat() # 新增 dify 类型 chat 实例
②封装DifyChat 类。 上面代码中,ChatOpenAI 和 AzureChatOpenAI 的定义都是来自著名 AI 开发框架 LangChain。其接口输入输出定义上是无法和 Dify API 对齐的。但得益于 LangChain 的抽象封装,shell-ai对 chat 实例的调用都收敛在 generate 方法。因此我们可以以最低成本,在 DifyChat 类中完成简单的输入对齐,即将 generate 传入入参的格式进行对齐,并传给 Dify 平台。然后在返回后完成输出响应的对齐。首先是对于 DifyChat 实现的简单封装:
2. class DifyChat:` `3. def generate(self, messages):` `4. print(messages)` `5. query = messages[0][0].content + messages[0][1].content` `6. print(query)` `7. headers = {` `8. 'Authorization': 'Bearer YOUR_DIFY_API_KEY',` `9. 'Content-Type': 'application/json',` `10. }` `11.` `12. data = {` `13. 'inputs': {},` `14. 'query': query,` `15. 'response_mode': 'blocking',` `16. 'conversation_id': '',` `17. 'user': 'abc-123'` `18. }` `19.` `20. response = requests.post('https://api.dify.ai/v1/chat-messages', headers=headers, json=data)` `21. print("Got Response from dify::" + response.text)` `22. return response
③处理请求参数和返回结果。 上述代码中需要注意替换请求头中 Authorization 字段的 API_KEY 为自己的值。API 域名为 Dify 默认,如有私有部署的需要替换为自己域名。处理完成后,DifyChat 实例就能获取用户输入的命令诉求,并将其和 shell-ai 本身的提示词模板拼合后,转发给刚才配置的 Dify 对话机器人。当机器人返回答复后,我们还需要差异化处理返回结果如下:
23. # Extract commands from the JSON response` `32. commands = []` `33. if (OPENAI_API_TYPE == "dify"): # 针对 dify 差异化处理` `34. try:` `35. data = json.loads(response.text) # 解析 dify 返回的 json` `36. command_json = json.loads(data["answer"]) # Dify 的答复在 answer 字段中` `37. command = command_json["command"] # 对齐原有逻辑,答复内容应为一个 json,其中 command 字段为命令` `38. print(command) # 打印 dify 返回的 command` `39. if command: # 对齐原有逻辑` `40. commands.append(command)` `41. except json.JSONDecodeError:` `42. # Fallback: treat the message as a command` `43. commands.append(msg.message.content)` `44. else: # 原始逻辑` `45. for msg in response.generations[0]:` `46. try:` `47. json_content = code_parser(msg.message.content)` `48. command_json = json.loads(json_content)` `49. command = command_json.get("command", "")` `50. if command: # Ensure the command is not empty` `51. commands.append(command)` `52. except json.JSONDecodeError:` `53. # Fallback: treat the message as a command` `54. commands.append(msg.message.content)` `55.` `56. # Deduplicate commands` `57. commands = list(set(commands))
④全局变量配置修改。 完成上述源码逻辑修改后,我们还需要在 ~/.config/shell-ai/config.json 中修改 OPENAI_API_TYPE 类型为 Dify:
24. {``58. "OPENAI_API_TYPE":"dify"``59. }
⑤最终,我们尝试使用本地运行方式试运行 shell_ai/main.py 文件,如下图所示。 可以发现我们修改后的代码成功完成了提示词模板的拼合,将拼合结果传给了 Dify API 并获得符合期望的返回结果。shell-ai 最终成功学习到了我们的私域知识,并给出了 my_wr_gen ~/Dev/ 这个建议。
如何学习AI大模型 ?
“最先掌握AI的人,将会晚掌握AI的人有竞争优势,晚掌握AI的人比完全不会AI的人竞争优势更大”。 在这个技术日新月异的时代,不会新技能或者说落后就要挨打。
老蓝我作为一名在一线互联网企业(保密不方便透露)工作十余年,指导过不少同行后辈。帮助很多人得到了学习和成长。
我是非常希望可以把知识和技术分享给大家,但苦于传播途径有限,很多互联网行业的朋友无法获得正确的籽料得到学习的提升,所以也是整理了一份AI大模型籽料包括:AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、落地项目实战等 免费分享出来。
- AI大模型学习路线图
- 100套AI大模型商业化落地方案
- 100集大模型视频教程
- 200本大模型PDF书籍
- LLM面试题合集
- AI产品经理资源合集

大模型学习路线
想要学习一门新技术,你最先应该开始看的就是学习路线图,而下方这张超详细的学习路线图,按照这个路线进行学习,学完成为一名大模型算法工程师,拿个20k、15薪那是轻轻松松!
视频教程
首先是建议零基础的小伙伴通过视频教程来学习,其中这里给大家分享一份与上面成长路线&学习计划相对应的视频教程。文末有整合包的领取方式
技术书籍籽料
当然,当你入门之后,仅仅是视频教程已经不能满足你的需求了,这里也分享一份我学习期间整理的大模型入门书籍籽料。文末有整合包的领取方式
大模型实际应用报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。文末有整合包的领取方式
大模型落地应用案例PPT
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。文末有整合包的领取方式
大模型面试题&答案
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。文末有整合包的领取方式
领取方式
这份完整版的 AI大模型学习籽料我已经上传CSDN,需要的同学可以微⭐扫描下方CSDN官方认证二维码免费领取!