遥感图像语义分割论文(2):GLOTS---Rethinking Transformers for Semantic Segmentation of Remote Sensing Images

本文介绍了GLOTS,一种使用Transformer编码器和解码器的遥感图像语义分割框架,解决现有方法中特征一致性问题和全局语义捕捉不足。通过MIM预训练和多尺度局部特征融合,GLOTS在多项实验中展示了优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是对TGRS 2023有关遥感图像语义分割论文的总结,如有侵权即刻删除!

遥感图像语义分割论文精读总结:Rethinking Transformers for Semantic Segmentation of Remote Sensing Images

Paper <<Rethinking Transformers for Semantic Segmentation of Remote Sensing Images>>

Code: https://github.com/lyhnsn/GLOTS  (本人努力复现中!)

       论文提出了一种用于遥感图像语义分割的全局-局部Transformer分割器(GLOTS:global-local transformer segmentor)框架,通过使用Transformer进行编码和解码来获得一致的特征表示,弥补了现有模型存在的:①将Transformer编码器与基于CNN的解码器相结合,导致特征表示不一致;②全局和局部上下文信息利用策略的有效性不足  的问题。

文章目录
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值