论文阅读—2023.7.13:遥感图像语义分割空间全局上下文信息网络(主要为unet网络以及改unet)附加个人理解与代码解析

文章探讨了深度学习在遥感影像分析中的挑战,提出了解决空间信息丢失和边界信息不明确的策略。通过在Decoder阶段结合多尺度特征和ReEncoder阶段的全局上下文信息,以及使用注意力机制强化U-Net的信息传递,增强了模型的表现。同时,介绍了利用保留边界损失函数和多尺度损失函数级联来改善边界信息的清晰度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前期看的文章大部分都是深度学习原理含量多一点,一直在纠结怎么改模型,论文看的很吃力,看一篇忘一篇,总感觉摸不到方向。想到自己是遥感专业,所以还是回归遥感影像去谈深度学习,回归问题,再想着用什么方法解决问题。

一、问题与解决方法 

1、易丢失空间信息

在 Decoder 阶段输出多尺度特征,与 ReEncoder 阶段结合获取全局上下文信息

2、边界信息不明确 

保留边界损失函数,设计多尺度损失函数级联方法

 Attention U-Net,在 U-Net 网络高低级语义信息融 合的过程中,加入注意力控制模块( Attention gates),强化了有效信息的传递,对无效信息的传输进行抑制。

二、原理

1、问题一的原理

Unet网络

参考这三篇,写的特别详细

Pytorch深度学习实战教程(二):UNet语义分割网络 - 知乎 (zhihu.com)

Pytorch深度学习实战教程(三):UNet模型训练,深度解析! - 知乎 (zhihu.com)

(个人记录:损失函数优化器选择)

U-Net原理分析与代码解读 - 知乎 (zhihu.com)

作者的网络

 网络可以看懂,但是不懂这样做可以解决第一个问题的原理。

2、问题2的原理

 结果

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值