R语言学习笔记
提示:本文数据rate2019.sav已上传到资源
箱线图
setwd("E:/00大三/201风险建模的统计方法/220308") #数据路径,需更改!!!
install.packages("readr") #安装包
library(Hmisc)#加载包
library(readr)#加载包
#===========================导入数据===2019===========================================
SAV.rate2019<-spss.get("rate2019.sav") #导入数据,标签。需要加载Hmisc包。
ls(SAV.rate2019) #看变量名
attach(SAV.rate2019)
describe(region1) #描述统计。需要加载Hmisc包。其他类似函数有summary(length、class和mode),list(列出全部),head(列出前几个)
#======================================求四分位点======================================
##结果储存的准备工作
name.row<-c(" ","25%分位点","中位数","75%分位点" ," ") #结果的行名称
name.col<-c("Type1","Type2","Type3","Type4","Type5","Type6","Type7","Type8","Type9","Fivenum","Boxplot") #结果的列名称,不能用中文,可能会错(如何能正确输出欸?)
list.name<-list(name.row,name.col) #由行名称、列名称组成的列表
NUM.row<-5 #
##EC, East Asia & Pacific
data.EC<-subset(SAV.rate2019,region1=="EC") #数据取子集 筛选数据
result.EC<-matrix(data=NA,nrow=5,ncol=11,byrow=FALSE,dimnames = list.name) #用于存储结果,5行11列,按列填充
for(i in 1:9){
result.EC[,i]<-quantile(data.EC$rate2019,probs=c(0,0.25,0.5,0.75,1),type=i)} #循环,得出5×9个数值,9个quantile的结果
result.EC[,10]<-fivenum(data.EC$rate2019) #第10列是五数fivenum的结果
result.EC[,11]<-boxplot(data.EC$rate2019)$stats#第11列是箱线图的结果
?quantile
##EP,Europe & Central Asia #后续三个都和EC相同方法
data.EP<-subset(SAV.rate2019,region1=="EP") #数据取子集 筛选数据
result.EP<-matrix(data=NA,nrow=5,ncol=11,byrow=FALSE,dimnames = list.name) #用于存储结果,5行11列,按列填充
for(i in 1:9){
result.EP[,i]<-quantile(data.EP$rate2019,preb=c(0,0.25,0.5,0.75,1),type=i)} #循环,得出5×9个数值
result.EP[,10]<-fivenum(data.EP$rate2019) #第10列是五数fivenum的结果
result.EP[,11]<-boxplot(data.EP$rate2019)$stats #第11列是箱线图的结果
##LC,Latin America & Caribbean
data.LC<-subset(SAV.rate2019,region1=="LC") #数据取子集 筛选数据
result.LC<-matrix(data=NA,nrow=5,ncol=11,byrow=FALSE,dimnames = list.name