2022年3月31日美团春招推荐算法岗

1、为什么分类问题损失不使用MSE而使用交叉熵

    1、均方误差作为损失函数,这时所构造出来的损失函数是非凸的,不容易求解,容易得到其局部最优解;而交叉熵的损失函数是凸函数;

    2、均方误差作为损失函数,求导后,梯度与sigmoid的导数有关,会导致训练慢;而交叉熵的损失函数求导后,梯度就是一个差值,误差大的话更新的就快,误差小的话就更新的慢点。

2、BN的作用,除了防止梯度消失这个作用外

    加快网络的训练和收敛的速度

    控制梯度爆炸防止梯度消失

    防止过拟合

    (1)加快收敛速度:在深度神经网络中中,如果每层的数据分布都不一样的话,将会导致网络非常难收敛和训练,而如果把 每层的数据都在转换在均值为零,方差为1 的状态下,这样每层数据的分布都是一样的训练会比较容易收敛。

    (2)控制梯度爆炸防止梯度消失:以sigmoid函数为例,sigmoid函数使得输出在[0,1]之间,实际上当x道了一定的大小,经过sigmoid函数后输出范围就会变得很小。

    (3)BN算法防止过拟合:在网络的训练中,BN的使用使得一个minibatch中所有样本都被关联在了一起,因此网络不会从某一个训练样本中生成确定的结果,即同样一个样本的输出不再仅仅取决于样本的本身,也取决于跟这个样本同属一个batch的其他样本,而每次网络都是随机取batch,这样就会使得整个网络不会朝这一个方向使劲学习。一定程度上避免了过拟合。

3、训练时出现不收敛的情况怎么办,为什么会出现不收敛

    从数据角度:

    是否对数据进行了预处理,包括分类标注是否正确,数据是否干净

    是否对数据进行了归一化

    考虑样本的信息量是否太大,而网络结构是否太简单

    考虑标签是否设置正确

    从模型角度:

    尝试加深网络结构

    Learning rate是否合适(太大,会造成不收敛,太小,会造成收敛速度非常慢)

    错误初始化网络参数

    train loss 不断下降,test loss不断下降,说明网络仍在学习;

    train loss 不断下降,test loss趋于不变,说明网络过拟合;

    train loss 趋于不变,test loss不断下降,说明数据集100%有问题;

    train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目;

    train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超参数设置不当,数据集经过清洗等问题。

4、LR与决策树的区别

    1、逻辑回归通常用于分类问题,决策树可回归、可分类。

    2、逻辑回归是线性函数,决策树是非线性函数。

    3、逻辑回归的表达式很简单,回归系数就确定了模型。决策树的形式就复杂了,叶子节点的范围+取值。两个模型在使用中都有很强的解释性,银行较喜欢。

    4、逻辑回归可用于高维稀疏数据场景,比如ctr预估;决策树变量连续最好,类别变量的话,稀疏性不能太高。

    5、逻辑回归的核心是sigmoid函数,具有无限可导的优点,常作为神经网络的激活函数。

    6、在集成模型中,随机森林、GBDT以决策树为基模型,Boosting算法也可以用逻辑回归作为基模型。

5、有哪些决策树算法

    ID3、C4.5、CART树的算法思想

    ID3算法的核心是在决策树的每个节点上应用信息增益准则选择特征,递归地构架决策树。

    C4.5算法的核心是在生成过程中用信息增益比来选择特征。

    CART树算法的核心是在生成过程用基尼指数来选择特征。

    基于决策树的算法有随机森林、GBDT、Xgboost等。

6、了解哪些行为序列建模方式

    参考:谈谈推荐系统中的用户行为序列建模 - 知乎

7、Leetcode_91题:解码方法

    思路:动态规划

class Solution:
    def numDecodings(self, s: str) -> int:
        n = len(s)
        f = [1] + [0] * n
        for i in range(1, n + 1):
            if s[i - 1] != \'0\':
                f[i] += f[i - 1]
            if i > 1 and s[i - 2] != \'0\' and int(s[i-2:i]) <= 26:
                f[i] += f[i - 2]
        return f[n]

8、智力题:红蓝颜料比例问题

    题目描述:两个桶分别装了一样多的红色和蓝色的颜料。先从蓝色桶里舀一杯倒入红色中,搅拌不均匀。再从有蓝色的红色桶中舀一杯倒入蓝色桶里,问两个桶中蓝:红与红:蓝的大小关系?

    第二步舀的时候,因为不均匀,所以无法知道具体有多少比例的红色和蓝色,可以换一个角度来考虑。因为是用的相同大小的杯子,所以两次操作后,两边的桶里的总体颜色是一样多的。假设红色里面混了一部分蓝色的颜料体积为X升,那么就有X升的红色颜料到了蓝色的桶里,所以两边的比例是一样的。

9、智力题:两个人数数,谁先数到20算谁赢。

    要求:每次只能数1或者2个数,采取什么策略可以保证必胜,先手和后手都可以选择。

    要想获胜的规律就是要抢到19这个数

    因为是两个人参与,所以关键数是19,当数到19时,对方就只能数20了,所以可以反推一下,要想获胜的话,在二十个数里,要想方设法地抢到19,16,13,10,7,4,1这几个公差为3的整数,也就是说在这个游戏里,要想获胜的话,就要抢到1这个数,即谁先数谁就获胜。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
2023311美团春季招聘笔试中共包含五道编程题目。以下是对每道题目的简要说明: 1. 题目一:这道题目要求解决一个数字统计的问题。可能涉及到的知识点包括数据结构、循环和条件判断等。解决问题的思路可能是使用字典等数据结构来保存统计结果,并使用循环逐个读取输入数据并进行统计。 2. 题目二:这道题目可能是一个字符串处理的问题。需要使用字符串的方法进行操作,如提取、拼接、查找和替换等。可能的解决思路包括使用正则表达式、切片和遍历等。 3. 题目三:这道题目可能涉及到算法和数据结构的知识。可能是一道涉及到数组、链表、树等数据结构的问题。解决思路可能包括遍历、递归、搜索和排序等。 4. 题目四:这道题目可能是一个动态规划的问题。需要根据给定的条件和规则,通过动态规划的方式求解问题。解决思路包括定义状态和转移方程,使用递推或记忆化搜索进行求解。 5. 题目五:这道题目可能是一个图论或网络问题。需要根据给定的图或网络结构,解决一个相关的问题。可能涉及到广度优先搜索、深度优先搜索、最短路径等知识。解决思路可能包括使用图或网络的相关算法进行求解。 以上只是对这五道编程题目的一些可能情况进行的简要描述,具体的题目内容可能会有所不同。希望这些信息能对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七月在线

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值