- 博客(6)
- 收藏
- 关注
原创 书生·浦语大模型实战营笔记 06
模型的类型众多(text-to-text, text-to-task, text-to-image, text-to-video, text-to-3D),需要有一个相对客观公平统一的框架来判断其生成质量。使用不同的 Prompt,提问同一个问题,观察回答是否一致,以此检验模型对 Prompt 的敏感性,也即模型问答的鲁棒性。大模型可以分为基座模型和对话模型(经过指令微调的模型)- 6大维度,100+评测集,50万+评测题目。- 基于大模型的大模型评测。- 如何评测大语言模型。- 适配任意形式的模型。
2024-02-19 11:17:06 476 1
原创 书生·浦语大模型实战营笔记 05
LMDeploy是 LLM 在 Nvidia 设备上部署的全流程解决方案。包括轻量化、推理和服务。- 核心功能:- 量化,Weight 和 KV Cache- 推理引擎- 服务- 量化- 基本概念- 计算密集(compute-bound)推理的绝大部分时间消耗在数值计算上;针对计算密集场景,可以通过更快的硬件计算单元来提升计算速度,比如量化为 W8A8 使用 INT8 Tensor Core 来加速计算。- 访存密集(memory-bound)
2024-02-18 14:56:20 725 1
原创 书生·浦语大模型实战营笔记 04
不同于增量预训练微调,数据中会有 Input 和 Output,希望模型学会的是答案(Output),而不是问题(Input),训练时指挥对答案(Output)部分计算 Loss。启动对话——(System)——User输入——(添加对话模板)——Assistant回复(包含对话模板)——(显示没有对话模板的回答)——回答。- LoRA 通过在原本的 Linear 旁,新增一个支路,包含两个连续的小 Linear,新增的这个支路通常叫做 Adapter。
2024-02-16 15:27:03 654 1
原创 书生·浦语大模型实战营笔记 03
LangChain 提供了检索问答链模板,可以自动实现知识检索、Prompt 嵌入、LLM 问答的全部流程。- 可以将 InternLM 部署在本地,并封装一个自定义 LLM 类,调用本地 InternLM 即可。选择一个垂直领域,收集该领域的专业资料构建专业知识库,并搭建专业问答助手,并在。- 可以使用多种支持语义检索的向量数据库,一般使用轻量级的 Chroma。- 使用向量数据库来支持语义检索,需要将文档向量化存入向量数据库。- 基于语义进行分割,保证每一个 chunk 的语义完整。
2024-02-13 12:56:09 628 1
原创 书生·浦语大模型实战营笔记 02
InternLM是一个开源的轻量级训练框架,旨在支持大模型训练而无需大量的依赖。通过单一的代码库,它支持在拥有数千个GPU的大型集群上进行预训练,并在单个GPU上进行微调,同时实现了卓越的性能优化。在1024个GPU上训练时,InternLM可以实现近90%的加速效率。Lagent是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。通过Lagent框架可以更好的发挥InternLM的全部性能。
2024-02-12 13:58:00 1080 2
原创 书生·浦语大模型实战营笔记 01
6. 应用:Lagent(框架)(支持 ReAct、ReWoo、AutoGPT),AgentLego(多模态智能体工具箱)(支持主流智能体系统:LangChain, Transformers Agent)- 模型选型(评测)——>业务场景是否复杂——>算力足够吗——>续训/全参数微调——>是否需要环境交互——>构建智能体——>模型评测——>模型部署。3. 微调:XTuner(增量预训练、指令微调、工具类指令微调;turbomind)1. 数据:书生·万卷(2T)/OpenDataLab(80T,工具)
2024-02-09 16:37:35 350 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人