pytorch 绘制一维热力图

文章介绍了热力图的概念,作为数据分布的可视化工具,特别适合展示连续型数据。通过matplotlib库展示了如何创建一维热力图,包括表示总体分布和数据变化情况的示例。此外,提到了注意力热力图的绘制原理,强调了数据获取和梯度计算的重要性。
摘要由CSDN通过智能技术生成

热力图

热力图(Heat Map)是指用 X 轴 和 Y 轴 表示的两个分类字段确定数值点的位置,通过相应位置的矩形颜色去表现数值的大小,颜色深代表的数值大。

热力图是非常特殊的一种图,可以显示不可点击区域发生的事情。热力图非常关注分布,可以不需要坐标轴,其背景通常是图片或者地图,一般使用彩虹色系做展示。

热力图一般以二维居多,多用于图像处理领域。

热力图主要用于展示连续型数据的分布情况。例如用颜色展现某一范围内不同地区数据量的差异,网站分析等等。

优势:好看、易于理解,数据信息更直观有效,可以清晰地呈现数据在地理空间的分布、频率或密度情况。

缺点:效果过于柔化,不适合用作数据的精确表达,且不适合比较单一变量的大小。

一维热力图-----总体分布情况

根据折线图中的数据创建一维热图,类似于直方图,根据每个 bins 的出现频率绘制不同颜色

代码

可以通过imshow关键字参数设置imshow设置图像的数据范围。 这用元组(left, right, bottom, top)设置范围。
在范围内使用直方图的最小和最大bin边缘可将数据移动到其原始值

import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
# 画布大小
plt.rcParams["figure.figsize"] = 5,2
# 顺序生成 -56 到 40 之间的96个数
pos = np.arange(-56,40) #there are 96 numbers from -56 to 39
print len(pos), pos.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值