离散数学复习——命题逻辑

文章详细介绍了命题逻辑的基本概念,包括命题、真值、命题联结词如非、与、或、蕴含和等价,以及它们的符号表示。还讨论了命题公式的构造和真值表,特别提到了永真式、永假式和可满足式。此外,文章强调了逻辑等价的概念,并列举了一些常见的逻辑等价式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

离散数学复习

一、命题逻辑

1.1命题
  1. 命题概念:能判断其真假的陈述句。真值为真、假两种。
  2. 命题联结词
联结词如果…则…当且仅当
符号化 ¬ \neg ¬ ∧ \wedge ∨ \vee → \to ↔ \leftrightarrow
  • 非: ¬ \neg ¬P为P的否定。

    P ¬ \neg ¬P
    10
    01
  • 与:又称并且,P ∧ \wedge Q当且仅当P、Q同时为真时,P ∧ \wedge ​Q为真。

    PQP ∧ \wedge Q
    111
    100
    010
    000
  • 或:P ∨ \vee Q当P、Q其中一个为真时,P ∨ \vee ​Q为真。

    PQP ∨ \vee Q
    111
    101
    011
    000
  • 如果…则…:条件词,又称蕴含,P → \to Q表示P蕴含Q,只有条件P为真且Q为假时,P → \to Q才为假。

    PQP → \to Q
    111
    100
    011
    001

    例:设P为天气好,Q为我去公园
    如果天气好,我就去公园;P → \to Q
    只要天气好,我就去公园;P → \to Q
    只有天气好,我才会去公园;Q → \to P
    仅当天气好,我才去公园。Q → \to P

  • 当且仅当:双条件,又称等值,P ↔ \leftrightarrow Q仅当P与Q的真值一样时,P ↔ \leftrightarrow ​Q为真。

    PQP ↔ \leftrightarrow Q
    111
    100
    010
    001
  1. 命题公式

​ 联结词可将原子命题联结起来构成复杂命题。由命题变元和联结词构成的复杂形式称为命题公式。

  • 例:如果2是奇数,则2+2≠4。

    设P为2是奇数,Q为2+2≠4,题设命题为P → \to Q,P为假,Q为假,命题为真。

  • 例:P:小李是大学生;Q:小李获得奖学金;R:小李很高兴
    P ∧ \wedge (Q → \to R):小李是大学生,如果小李获得奖学金,那么小李很高兴。

  1. 命题公式真值表

    永真式:又称重言式,所有指派都是成真指派。

    永假式:又称矛盾式,所有指派都是成假指派。

    可满足式:命题公式中至少有一种成真指派。

  • P ∧ \wedge R ∧ \wedge ¬ \neg ¬(Q → \to ​P)

    PQRP ∧ \wedge RQ → \to P ¬ \neg ¬(Q → \to P)P ∧ \wedge R ∧ \wedge ¬ \neg ¬(Q → \to P)
    0000100
    0010100
    0100010
    0110010
    1000100
    1011100
    1100100
    1111100

    该命题为永假式。

  • (P → \to Q) → \to ( ¬ \neg ¬Q → \to ¬ \neg ¬​P)

    pQP → \to Q ¬ \neg ¬Q → \to ¬ \neg ¬P(P → \to Q) → \to ( ¬ \neg ¬Q → \to ¬ \neg ¬P)
    00111
    01111
    10001
    11111

    该命题为永真式。

  • ( ¬ \neg ¬P ∧ \wedge Q) → \to ¬ \neg ¬R

PQR ¬ \neg ¬P ∧ \wedge Q ¬ \neg ¬R( ¬ \neg ¬P ∧ \wedge Q) → \to ¬ \neg ¬R
000010
001001
010111
011101
100010
101001
110010
111001

该命题为可满足式。

1.2逻辑等价
  1. 等值式:若A → \to B为永真式,则称A、B是等值的。记作A ⇔ \Leftrightarrow B。

​ 常见等值式:

  • 双否律: ¬ \neg ¬ ¬ \neg ¬P ⇔ \Leftrightarrow P
  • 幂等律:P ∨ \vee P ⇔ \Leftrightarrow P;P ∧ \wedge P ⇔ \Leftrightarrow P
  • 结合律:(P ∧ \wedge Q) ∧ \wedge R ⇔ \Leftrightarrow P ∧ \wedge (Q ∧ \wedge R);(P ∨ \vee Q) ∨ \vee R ⇔ \Leftrightarrow P ∨ \vee (Q ∨ \vee R)
  • 交换律:P ∧ \wedge Q ⇔ \Leftrightarrow Q ∧ \wedge P;P ∨ \vee Q ⇔ \Leftrightarrow Q ∨ \vee P
  • 分配律:P ∨ \vee (Q ∧ \wedge R) ⇔ \Leftrightarrow (P ∨ \vee Q) ∧ \wedge (P ∨ \vee R);P ∧ \wedge (Q ∨ \vee R) ⇔ \Leftrightarrow (P ∧ \wedge Q) ∨ \vee (P ∧ \wedge R)
  • 吸收律:P ∨ \vee (P ∧ \wedge Q) ⇔ \Leftrightarrow P;P ∧ \wedge (P ∨ \vee Q) ⇔ \Leftrightarrow P
  • 德摩根律: ¬ \neg ¬(P ∧ \wedge Q) ⇔ \Leftrightarrow ¬ \neg ¬P ∨ \vee ¬ \neg ¬Q; ¬ \neg ¬(P ∨ \vee Q) ⇔ \Leftrightarrow ¬ \neg ¬P ∧ \wedge ¬ \neg ¬Q
  • 同一律:P$\wedge 1 1 1\Leftrightarrow P ; P P;P PP\vee 0 0 0\Leftrightarrow$P
  • 零律:P$\wedge 0 0 0\Leftrightarrow 0 ; P 0;P 0P\vee 1 1 1\Leftrightarrow$1
  • 否定律:P ∨ \vee ¬ \neg ¬P$\Leftrightarrow 1 ; P 1;P 1P\wedge$ ¬ \neg ¬P$\Leftrightarrow$0
  • 蕴含等值式:P → \to Q ⇔ \Leftrightarrow ¬ \neg ¬P ∨ \vee Q
  • 等价等值式:P ↔ \leftrightarrow Q ⇔ \Leftrightarrow (P → \to Q) ∧ \wedge (Q → \to P)
  • 假言易位:P → \to Q ⇔ \Leftrightarrow ¬ \neg ¬Q → \to ¬ \neg ¬P
  • 等价否定 :P → \to Q ⇔ \Leftrightarrow ¬ \neg ¬P → \to ¬ \neg ¬Q
  • 归谬论:(P → \to Q) ∧ \wedge ( ¬ \neg ¬P → \to Q) ⇔ \Leftrightarrow ¬ \neg ¬P
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

住在天上的云

如果您喜欢我的文章,欢迎打赏哦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值