离散数学复习
一、命题逻辑
1.1命题
- 命题概念:能判断其真假的陈述句。真值为真、假两种。
- 命题联结词
联结词 | 非 | 与 | 或 | 如果…则… | 当且仅当 |
---|---|---|---|---|---|
符号化 | ¬ \neg ¬ | ∧ \wedge ∧ | ∨ \vee ∨ | → \to → | ↔ \leftrightarrow ↔ |
-
非: ¬ \neg ¬P为P的否定。
P ¬ \neg ¬P 1 0 0 1 -
与:又称并且,P ∧ \wedge ∧Q当且仅当P、Q同时为真时,P ∧ \wedge ∧Q为真。
P Q P ∧ \wedge ∧Q 1 1 1 1 0 0 0 1 0 0 0 0 -
或:P ∨ \vee ∨Q当P、Q其中一个为真时,P ∨ \vee ∨Q为真。
P Q P ∨ \vee ∨Q 1 1 1 1 0 1 0 1 1 0 0 0 -
如果…则…:条件词,又称蕴含,P → \to →Q表示P蕴含Q,只有条件P为真且Q为假时,P → \to →Q才为假。
P Q P → \to →Q 1 1 1 1 0 0 0 1 1 0 0 1 例:设P为天气好,Q为我去公园
如果天气好,我就去公园;P → \to →Q
只要天气好,我就去公园;P → \to →Q
只有天气好,我才会去公园;Q → \to →P
仅当天气好,我才去公园。Q → \to →P -
当且仅当:双条件,又称等值,P ↔ \leftrightarrow ↔Q仅当P与Q的真值一样时,P ↔ \leftrightarrow ↔Q为真。
P Q P ↔ \leftrightarrow ↔Q 1 1 1 1 0 0 0 1 0 0 0 1
- 命题公式
联结词可将原子命题联结起来构成复杂命题。由命题变元和联结词构成的复杂形式称为命题公式。
-
例:如果2是奇数,则2+2≠4。
设P为2是奇数,Q为2+2≠4,题设命题为P → \to →Q,P为假,Q为假,命题为真。
-
例:P:小李是大学生;Q:小李获得奖学金;R:小李很高兴
P ∧ \wedge ∧(Q → \to →R):小李是大学生,如果小李获得奖学金,那么小李很高兴。
-
命题公式真值表
永真式:又称重言式,所有指派都是成真指派。
永假式:又称矛盾式,所有指派都是成假指派。
可满足式:命题公式中至少有一种成真指派。
-
P ∧ \wedge ∧R ∧ \wedge ∧ ¬ \neg ¬(Q → \to →P)
P Q R P ∧ \wedge ∧R Q → \to →P ¬ \neg ¬(Q → \to →P) P ∧ \wedge ∧R ∧ \wedge ∧ ¬ \neg ¬(Q → \to →P) 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 该命题为永假式。
-
(P → \to →Q) → \to →( ¬ \neg ¬Q → \to → ¬ \neg ¬P)
p Q P → \to →Q ¬ \neg ¬Q → \to → ¬ \neg ¬P (P → \to →Q) → \to →( ¬ \neg ¬Q → \to → ¬ \neg ¬P) 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 该命题为永真式。
-
( ¬ \neg ¬P ∧ \wedge ∧Q) → \to → ¬ \neg ¬R
P | Q | R | ¬ \neg ¬P ∧ \wedge ∧Q | ¬ \neg ¬R | ( ¬ \neg ¬P ∧ \wedge ∧Q) → \to → ¬ \neg ¬R |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 1 |
该命题为可满足式。
1.2逻辑等价
- 等值式:若A → \to →B为永真式,则称A、B是等值的。记作A ⇔ \Leftrightarrow ⇔B。
常见等值式:
- 双否律: ¬ \neg ¬ ¬ \neg ¬P ⇔ \Leftrightarrow ⇔P
- 幂等律:P ∨ \vee ∨P ⇔ \Leftrightarrow ⇔P;P ∧ \wedge ∧P ⇔ \Leftrightarrow ⇔P
- 结合律:(P ∧ \wedge ∧Q) ∧ \wedge ∧R ⇔ \Leftrightarrow ⇔P ∧ \wedge ∧(Q ∧ \wedge ∧R);(P ∨ \vee ∨Q) ∨ \vee ∨R ⇔ \Leftrightarrow ⇔P ∨ \vee ∨(Q ∨ \vee ∨R)
- 交换律:P ∧ \wedge ∧Q ⇔ \Leftrightarrow ⇔Q ∧ \wedge ∧P;P ∨ \vee ∨Q ⇔ \Leftrightarrow ⇔Q ∨ \vee ∨P
- 分配律:P ∨ \vee ∨(Q ∧ \wedge ∧R) ⇔ \Leftrightarrow ⇔(P ∨ \vee ∨Q) ∧ \wedge ∧(P ∨ \vee ∨R);P ∧ \wedge ∧(Q ∨ \vee ∨R) ⇔ \Leftrightarrow ⇔(P ∧ \wedge ∧Q) ∨ \vee ∨(P ∧ \wedge ∧R)
- 吸收律:P ∨ \vee ∨(P ∧ \wedge ∧Q) ⇔ \Leftrightarrow ⇔P;P ∧ \wedge ∧(P ∨ \vee ∨Q) ⇔ \Leftrightarrow ⇔P
- 德摩根律: ¬ \neg ¬(P ∧ \wedge ∧Q) ⇔ \Leftrightarrow ⇔ ¬ \neg ¬P ∨ \vee ∨ ¬ \neg ¬Q; ¬ \neg ¬(P ∨ \vee ∨Q) ⇔ \Leftrightarrow ⇔ ¬ \neg ¬P ∧ \wedge ∧ ¬ \neg ¬Q
- 同一律:P$\wedge 1 1 1\Leftrightarrow P ; P P;P P;P\vee 0 0 0\Leftrightarrow$P
- 零律:P$\wedge 0 0 0\Leftrightarrow 0 ; P 0;P 0;P\vee 1 1 1\Leftrightarrow$1
- 否定律:P ∨ \vee ∨ ¬ \neg ¬P$\Leftrightarrow 1 ; P 1;P 1;P\wedge$ ¬ \neg ¬P$\Leftrightarrow$0
- 蕴含等值式:P → \to →Q ⇔ \Leftrightarrow ⇔ ¬ \neg ¬P ∨ \vee ∨Q
- 等价等值式:P ↔ \leftrightarrow ↔Q ⇔ \Leftrightarrow ⇔(P → \to →Q) ∧ \wedge ∧(Q → \to →P)
- 假言易位:P → \to →Q ⇔ \Leftrightarrow ⇔ ¬ \neg ¬Q → \to → ¬ \neg ¬P
- 等价否定 :P → \to →Q ⇔ \Leftrightarrow ⇔ ¬ \neg ¬P → \to → ¬ \neg ¬Q
- 归谬论:(P → \to →Q) ∧ \wedge ∧( ¬ \neg ¬P → \to →Q) ⇔ \Leftrightarrow ⇔ ¬ \neg ¬P