目录
1.1 命题与逻辑联结词
1.1.1 四个定义
定义1:命题是能够确切判断其断言是真或假的陈述句。
定义2:悖论是不能判断真假的陈述语句。
定义3:命题标识符为表示命题的符号。
命题常元—>确定的命题;命题变元—>不是命题
定义4:用一个具体的命题代入命题标识符p的过程(对p的解释/指派)
1.1.2 命题的分类
1.原子命题
2.复合命题:或者、并且、不、如果...、则...、当且仅当
1.1.3 逻辑联结词
1.否定联结词——~
2.合取——
3.析取——
4.不可兼或(异或)—— 两命题1真1假为真
5.条件(如果P则Q)—— —> ~PQ<=>P—>Q
※形式条件命题&实质条件命题(—>)
在实质条件命题中,当前提是假时,则不管后件是真是假,条件命题一定为真!
6.双条件(P,Q值相同时,P<—>Q为真)—— <—>同或
1.1.4 联结词优先级
否定—>合取—>析取—>条件—>双条件
1.2 命题公式及其赋值
了解
1.命题常项与命题变项
2.命题公式与赋值
3.永真式(重言式)
4.矛盾式
!!一个合适公式一定要满足一个条件,即在任何情况下使用它都没有歧义。
1.3 命题公式的等价
1.基本等价式
2.等价式的判断
1.3.1 四个定义
定义1:永真公式(重言式):在它的所有解释之下都为“真”
定义2:矛盾式(不可满足公式):在它的所有解释之下都为“假”
定义3:可满足公式:存在解释时公式取值为1
定义4:对偶式:在给定的仅使用联结词~,,的命题公式A中,把和 ,F和T互换而得的公式A*
※若两个公式等价,那它们的对偶式也是等价的
1.3.2 基本等价式——命题定律
E1:(G—>H)<=>(~GH) 蕴涵律
E2:G(HS)<=>(GH)(GS) 分配律
G(HS)<=>(GH)(GS) 分配律
E3:(GH)—>S<=>G—>(H—>S) 输出律
E4:(GH)<=>(~GH)(G~H) 排中律
E5:P—>Q<=>~Q—>~P 逆反律
1.3.3 等价式的判定
1.真值表法
2.公式推演(等价变换)
1.4 联结词的完备集
定义1:PQ—>与非,PQ—>或非
易推得:PP<=>~P,PP<=>~P
定义2:条件否定,PQ<=>~(P—>Q)
定义3:功能完备集&最小功能完备集
1.5 命题公式的范式表示
掌握析取、合取范式、主析取(主合取)范式、极小项、极大项等的定义
掌握求主析取(主合取)范式的方法:真值表法,等价变换法
1.5.1 三个定义
定义1:范式——规范型式
eg.P(Q~R),~(QR)既不是析取范式也不是合取范式
定义2:在n个变元的基本积(短语)中,若每一个变元与其否定并不同时存在,且二者之一必出现且仅出现一次,则称这种基本积为极小项(短语)。
※由有限个极小项组成的析取式称为主析取范式
定义3:在n个变元的基本和(子句)中,若每一个变元与其否定并不同时存在,且二者之一必出现且仅出现一次,则称这种基本和为极大项(子句)。
※由有限个极大项组成的合取式称为主合取范式
1.5.2 四个定理
定理1:主合取范式——真值表中使公式取值0时的解释所对应的全部极大项的合取式。
定理2:主析取范式——真值表中使公式取值1时的解释所对应的全部极小项的析取式。
定理3:永真式无0值,无极大项。
定理4:矛盾式无1值,无极小项
1.6 命题公式的蕴涵
定义:若在任何解释下,A取1时B也取1,则称A蕴涵B,A=>B(不考虑A取0的情况)
定理:A=>B当且仅当A—>B为永真式。
1.6.1 五个性质
1.若A=>B,A=>C,则A=>BC
2.若A=>C,B=>C,则AB=>C
3.AB=>C iff A=>B—>C(CP规则基础)
4.A=>B iff A~B是矛盾式(反证法基础)
5.A=>B iff ~B=>~A(逆向思维的基础)
1.6.2 基本蕴含关系式
I1:P(P—>Q)=>Q(假言推论/分离规则)
I2:(P—>Q)(Q—>R)=>P—>R 假言(前提条件)三段论!!!
I3:(PQ)(P—>R)(Q—>R)=>R 二难推论
I4:(PQ)(~PR)=>QR 归结原理
1.7 命题逻辑的推理方法
定义:设G1,G2,...,Gn,H是公式,若G1,G2,...,Gn=>H/G1G2...Gn=>H称H是前提G1,G2,...,Gn的逻辑结果(有效结论)
1.7.1 推理规则
1.P规则:在推导过程中,可随时引入前提集合中的任一前提
2.T规则:逻辑结果引用规则,TE(等价式),TI(蕴涵式)
3.CP规则:若要推导的结果是形如B—>C的公式,则把B作为附加前提
1.7.2 推理方法