离散数学 第一章 命题逻辑

本文详细介绍了命题逻辑的基础概念,包括命题、逻辑联结词及其优先级,重点讨论了命题公式的等价性、范式表示以及蕴含关系。通过命题定律、等价变换法和推理规则,阐述了如何进行有效的命题逻辑推理。此外,还探讨了命题公式的完备集和蕴涵的性质,为理解逻辑推理提供了坚实基础。
摘要由CSDN通过智能技术生成

目录

1.1 命题与逻辑联结词

1.1.1 四个定义

1.1.2 命题的分类

1.1.3 逻辑联结词

1.1.4 联结词优先级

1.2 命题公式及其赋值

1.3 命题公式的等价

 1.3.1 四个定义

1.3.2 基本等价式——命题定律

1.3.3 等价式的判定

1.4 联结词的完备集

1.5 命题公式的范式表示

1.5.1 三个定义

1.5.2 四个定理

1.6 命题公式的蕴涵

1.6.1 五个性质

1.6.2 基本蕴含关系式

1.7 命题逻辑的推理方法

1.7.1 推理规则

1.7.2 推理方法


1.1 命题与逻辑联结词

1.1.1 四个定义

定义1:命题是能够确切判断其断言是真或假的陈述句

定义2:悖论是不能判断真假的陈述语句

定义3:命题标识符为表示命题的符号。

                命题常元—>确定的命题;命题变元—>不是命题

定义4:用一个具体的命题代入命题标识符p的过程(对p的解释/指派)

1.1.2 命题的分类

1.原子命题

2.复合命题:或者、并且、不、如果...、则...、当且仅当

1.1.3 逻辑联结词

1.否定联结词——~

2.合取——\wedge

3.析取——\vee

4.不可兼或(异或)——\bigtriangledown       两命题1真1假为真

5.条件(如果P则Q)—— —>      ~P\veeQ<=>P—>Q

        ※形式条件命题&实质条件命题(—>)

        在实质条件命题中,当前提是假时,则不管后件是真是假,条件命题一定为真!

6.双条件(P,Q值相同时,P<—>Q为真)—— <—>同或

1.1.4 联结词优先级

否定—>合取—>析取—>条件—>双条件

1.2 命题公式及其赋值

了解

1.命题常项与命题变项

2.命题公式与赋值

3.永真式(重言式)

4.矛盾式

!!一个合适公式一定要满足一个条件,即在任何情况下使用它都没有歧义

1.3 命题公式的等价

1.基本等价式

2.等价式的判断

 1.3.1 四个定义

定义1:永真公式(重言式):在它的所有解释之下都为“真”

定义2:矛盾式(不可满足公式):在它的所有解释之下都为“假”

定义3:可满足公式:存在解释时公式取值为1

定义4:对偶式:在给定的仅使用联结词~,\vee\wedge的命题公式A中,把\wedge\vee,F和T互换而得的公式A*

        ※若两个公式等价,那它们的对偶式也是等价的

1.3.2 基本等价式——命题定律

E1:(G—>H)<=>(~G\veeH)    蕴涵律

E2:G\vee(H\wedgeS)<=>(G\veeH)\wedge(G\veeS)    分配律

     G\wedge(H\veeS)<=>(G\wedgeH)\vee(G\wedgeS)   分配律

E3:(G\wedgeH)—>S<=>G—>(H—>S)  输出律

E4:(G\bigtriangledownH)<=>(~G\wedgeH)\vee(G\wedge~H)   排中律

E5:P—>Q<=>~Q—>~P    逆反律

1.3.3 等价式的判定

1.真值表法

2.公式推演(等价变换)

1.4 联结词的完备集

定义1:P\uparrowQ—>与非,P\downarrowQ—>或非

           易推得:P\uparrowP<=>~P,P\downarrowP<=>~P

定义2:条件否定_{\rightarrow}^{C},P_{\rightarrow}^{C}Q<=>~(P—>Q)

定义3:功能完备集&最小功能完备集

1.5 命题公式的范式表示

 掌握析取、合取范式、主析取(主合取)范式、极小项、极大项等的定义

掌握求主析取(主合取)范式的方法:真值表法,等价变换法

1.5.1 三个定义

定义1:范式——规范型式

 eg.P\vee(Q\vee~R),~(Q\veeR)既不是析取范式也不是合取范式

 定义2:在n个变元的基本积(短语)中,若每一个变元与其否定并不同时存在,且二者之一必出现且仅出现一次,则称这种基本积为极小项(短语)。

 ※由有限个极小项组成的析取式称为主析取范式

定义3:在n个变元的基本和(子句)中,若每一个变元与其否定并不同时存在,且二者之一必出现且仅出现一次,则称这种基本和为极大项(子句)。

 ※由有限个极大项组成的合取式称为主合取范式

1.5.2 四个定理

定理1:主合取范式——真值表中使公式取值0时的解释所对应的全部极大项的合取式。

定理2:主析取范式——真值表中使公式取值1时的解释所对应的全部极小项的析取式。

定理3:永真式无0值,无极大项。

定理4:矛盾式无1值,无极小项

1.6 命题公式的蕴涵

 定义:若在任何解释下,A取1时B也取1,则称A蕴涵B,A=>B(不考虑A取0的情况)

定理:A=>B当且仅当A—>B为永真式。

1.6.1 五个性质

1.若A=>B,A=>C,则A=>B\wedgeC

2.若A=>C,B=>C,则A\veeB=>C

3.A\wedgeB=>C  iff A=>B—>C(CP规则基础)

4.A=>B   iff  A\wedge~B是矛盾式(反证法基础)

5.A=>B   iff  ~B=>~A(逆向思维的基础)

1.6.2 基本蕴含关系式

I1:P\wedge(P—>Q)=>Q(假言推论/分离规则)

I2:(P—>Q)\wedge(Q—>R)=>P—>R   假言(前提条件)三段论!!!

I3:(P\veeQ)\wedge(P—>R)\wedge(Q—>R)=>R   二难推论

I4:(P\veeQ)\wedge(~P\veeR)=>Q\veeR    归结原理

1.7 命题逻辑的推理方法

定义:设G1,G2,...,Gn,H是公式,若G1,G2,...,Gn=>H/G1\wedgeG2\wedge...\wedgeGn=>H称H是前提G1,G2,...,Gn的逻辑结果(有效结论)

1.7.1 推理规则

1.P规则:在推导过程中,可随时引入前提集合中的任一前提

2.T规则:逻辑结果引用规则,TE(等价式),TI(蕴涵式)

3.CP规则:若要推导的结果是形如B—>C的公式,则把B作为附加前提

1.7.2 推理方法

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值