逻辑主要研究推理过程,而推理过程必须依靠命题来表述。
在命题逻辑中,“命题”被看作最小单位。
命题逻辑是数理逻辑中最基本、最简单的部分。
1.1.1 命题
什么是命题?
推理是数理逻辑研究的中心问题,推理的前提和结论都是表达判断的的陈述句,因而表达判断的陈述句构成了推理的基本单位,称具有真假意义的陈述句为命题。
命题总是具有一个确定的真或假的“值”。
判断给定的句子是否为命题的基本步骤:
1.首先应是称述句
2.其次要有唯一的真值
1.1.2 命题的分类
命题可以分为两种类型:
1.一种命题是不能再分解为更简单命题,称作为原子命题,又可称为简单命题;
2.另一种命题是通过联结词、标点符号将原子命题联结而成,称作为复合命题。
**复合命题的基本性质:**其值可以由原子命题的真值以及他们复合成该复合命题的联结方式确定。
1.1.3 命题标识符
通常使用大写字母P、Q、R;或用带下标的的大写字母或用数字, 如Pi,[12]等。
命题常元
一个命题标识符如果表示确定的简单命题,就称为命题常元。
命题变元
如果一个命题标识符只表示任意简单命题的位置标志,就称为它为命题变元。
因为命题变元可以表示任意简单命题,所以它不能确定真值,故命题变元不是命题。
指派
当命题变元P 用一个特定的简单命题取代是P才能确定真值,这时也称P进行指派。