题目描述
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
题解代码一
最先想到的方法是利用递归的思想,结果是正确的,但是会超出时间限制,因为递归产生了很多重复的计算,所以需要使用动态规划
class Solution {
public:
int climbStairs(int n) {
if(n==1)
return 1;
else if(n==2)
return 2;
else
return climbStairs(n-1)+climbStairs(n-2);
}
};
题解代码二(利用动态规划)
class Solution {
public:
int climbStairs(int n) {
vector<int> dp(n + 1, 0);
dp[1] = 1;
if (n > 1) dp[2] = 2;
for (int i = 3; i <= n; i++) dp[i] = dp[i - 1] + dp[i - 2];
return dp[n];
}
};
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。