阿里云Quick BI理论学习

🍓在前面的章节中我们学习了计算引擎MaxComputer和大数据开发治理平台DataWorks,今天我们来学习数据分析平台Quick BI,按照惯例,分为两个章节,一章理论一章实践,本文属于理论学习,对往期内容感兴趣的小伙伴可以查看下面内容👇:

🍈在这一章节中,我们学习Quick BI的基本构成和概念,学习数据建模、报表制作等等。让我们开始今日份的学习吧!

Quick BI 的实战部分也更新完毕,大家可以查看下面链接

1. 商务智能BI

Bl报表工具以数据仓库为基础,通过表格及一系列可视化图表为企业管理者提供决策支持,帮助管理者更加快速精确的洞查业务机会,提开企业竞争力。

  • 通过数据分析平台(BI报表工具)可方便快捷的实现多元化的报表设计以及数据分析
  • 通过B1报表工具中常用的图表组件可构建可视化应用
  • 通过集合多个可视化应用可构建数据门户进行各业务专题分析。

在这里插入图片描述

2. Quick BI介绍

**Quick BI是一个简单易用的BI报表制作与分析工具。**基于云计算,致力于大数据高效分析与展现的轻量级自助BI工具服务平台。通过对数据源的连接和数据集的创建,对数据进行即时的分析与查询;通过电子表格或者仪表盘功能,以拖拽的方式进行数据的可视化呈现。特点如图:
在这里插入图片描述

3. Quick BI的产品定位

Quick BI 提供海量数据实时在线分析,拖拽式操作,丰富的可视化效果,让业务人员自助实现数据分析、重塑数据生产的全链路,最终实现人人都是数据分析师。
在这里插入图片描述

4. Quick BI的实现

4.1 Quick BI的基本对象

基本对象主要包括:数据源、数据集、电子表格、仪表盘
在这里插入图片描述

4.2 Quick BI的架构

在这里插入图片描述
解决的难题:

  • 取数难:业务人员需经常找技术写SQL取数查看各个维度的数据做决策。
  • 报表产出效率低、维护难:后台分析系统的数据报表变更,编码研发周期长,维护困难。
  • 图表效果设计不佳,人力成本高:使用开源类图表工具做报表,界面效果不佳,人力维护成本高。

在这里插入图片描述

优势及能力:

  • 上手简单,快捷,满足不同岗位的数据需求,学习门槛低。
  • 与内部系统集成,可结合进行数据分析,极大提高看数据的效率
  • 解决员工使用多系统的麻烦,利于使用和控制。
    在这里插入图片描述

交易权限控制:

  • 数据权限行级控制:轻松实现同一份报表,不同区经理只看到本区的相关数据。
  • 使用多变的业务需求:统计指标经常根据业务发展而频繁变动,负担重,响应慢。
  • 跨数据集成及计算性能保障:充分利用云上BI的底层能力,解决跨源数据分析及计算能力性能瓶颈问题。

5. Quick BI的功能链路

Quick BI的各个功能部分如下:
在这里插入图片描述

6. 总结

这里我们主要介绍一下Quick BI的理论基础,其实和我们开源的tableau很像哦! 下一篇博客,我将用一个案例来实现它的一整套流程。

7.参考资料

《阿里云全球培训中心》
《阿里云DataWorks使用手册》

一、项目简介 本项目教程以国内电商巨头实际业务应用场景为依托,同时以阿里云ECS服务器为技术支持,紧跟大数据主流场景,对接企业实际需求,对电商数仓的常见实战指标进行了详尽讲解,让你迅速成长,获取最前沿的技术经验。 二、项目架构 版本框架:Flume、DateHub、DataWorks、MaxCompute、MySql以及QuickBI等; Flume:大数据领域被广泛运用的日志采集框架; DateHub:类似于传统大数据解决方案中Kafka的角色,提供了一个数据队列功能。对于离线计算,DataHub除了供了一个缓冲的队列作用。同时由于DataHub提供了各种与其他阿里云上下游产品的对接功能,所以DataHub又扮演了一个数据的分发枢纽工作; 据上传和下载通道,提供SQL及MapReduce等多种计算分析服务,同时还提供完善的安全解决方案; DataWorks:是基于MaxCompute计算引擎,从工作室、车间到工具集都齐备的一站式大数据工厂,它能帮助你快速完成数据集成、开发、治理、服务、质量、安全等全套数据研发工作; QuickBI & DataV:专为云上用户量身打造的新一代智能BI服务平台。 三、项目场景 数仓项目广泛应用于大数据领域,该项目技术可以高度适配电商、金融、医疗、在线教育、传媒、电信、交通等各领域; 四、项目特色 本课程结合国内多家企业实际项目经验。从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建基于阿里云服务器的大数据集群。采用阿里云ECS服务器作为数据平台,搭建高可用的、高可靠的Flume数据采集通道,运用阿里云DateHub构建中间缓冲队列并担任数据分发枢纽将数据推送至阿里自主研发的DataWorks对数据进行分层处理,采用MaxCompute作为处理海量数据的方案,将计算结果保存至MySQL并结合阿里的QuickBI工作做最终数据展示。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柳小葱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值