时间和空间复杂度分析

上期回顾

this

this:表示当前对象的引用this 关键字能否出现在静态方法中?

一定存在对象才有this,静态方法根本就不存在对象,何来当前对象之说

在这里插入图片描述

代码块

在这里插入图片描述

当类中存在静态变量,静态代码块[1…N]

则在类加载时,这些静态变量的赋值以及静态代码块,最终都会合并为一个大的静态代码块,由JVM执行。


时间和空间复杂度分析

1. 算法效率

算法效率分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,空间效率被称作空间复杂度。时间复杂度主要衡量的是一个算法的运行速度,空间复杂度主要衡量一个算法所需要的额外空间,一般来说,行数越多(循环和递归),时间越长。

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

void func1(int N){
    int count = 0;
    for(int i = 0; i < N ; i++){
        for(int j = 0; j < N; j++){			//N^2
            count++;
        }
    }
    for(int k = 0; k < 2 * N ; k++){        //2N
        count++;
    }
    int M = 10;
    while((M--) > 0) {						//10
        count++;
    }
}

f u n c 1 执 行 的 基 本 操 作 次 数 : F ( N ) = N 2 + 2 N + 10 func1执行的基本操作次数:F(N)=N^2+2N+10 func1F(N)=N2+2N+10

2. 大O渐进表示法

O() -> 是一个函数渐进的数学符号

大O阶函数的推导原则:

  1. 用常数1来表示所有的加法常数 10, 2 => 1
  2. 最后的大O函数只保留最高阶想,只保留N2
  3. 若最高阶项还有系数, 3N2, 4N2, 去除这个系数,保留1即可 -> N2

只要代码的执行 行数 不是个变量,100行,1000行,10000行,我们都认为这是O(1) ==>常数时间内的算法

3. 算法运行时间

最坏的时间复杂度 任意输入规模的最大运行次数(上界)

最好情况的时间复杂度 任意输入规模的最小运行次数(下界)

平均情况的时间复杂度 任意输入规模的期望运行次数

最坏的情况:O(n)

最好的情况:O(1)

平均情况:所有情况/情况的个数

1+2+3+…+n = (n+1)*n/2 = > 所有情况 除以情况个数n => (n+1)/2 => 只保留最高阶 => n/2

情况的个数n n/2 , 去除系数==>O(n)

时间复杂度

例题

计算func3的时间复杂度
//计算func3的时间复杂度
void func3(int N, int M){
    int count = 0;
    for(int k = 0; k < M; k++){
        count++;
    }
    for(int k = 0; k < N; k++){
        count++;
    }
    System.out.println(count);
}//此时M和N都是变量,无法确定谁大谁小,时间复杂度就是O(M+N)
计算func4的时间复杂度
void func4(int N) {
    int count = 0;
    for (int k = 0; k < 100; k++) {
        count++;
    }
    System.out.println(count);
}//此时这个变量N不影响循环的次数     O(1)
计算bubblesort的时间复杂度
void bubblesort(int[] array) {
    for (int end = array.length; end > 0; end++) {
        boolean sorted = true;
        for (int i = 1; i < end; i++) {
            if (array[i - 1] > array[i]) {
                Swap(array, i - 1, i);
                sorted = false;
            }
        }
        if(sorted ==true){
            break;
        }
    }
}//O(n * n = n^2)
计算binarySearch的时间复杂度?
// 计算binarySearch的时间复杂度?
int binarySearch(int[] array, int value) {
   int begin = 0;
   int end = array.length - 1;
   while (begin <= end) {
       int mid = begin + ((end-begin) / 2);
       if (array[mid] < value)
           begin = mid + 1;
       else if (array[mid] > value)
           end = mid - 1;
       else
           return mid;
   }
   return -1;
}

千万不要看见循环就是O(n),要看这个循环下次开始条件是啥

再下一次循环开始的时候,循环的起始或者终止就变成了区间的一半

n/2/2/2==1最终求到底执行了多少次除法操作

log2N => 换底公式:logNM = logcM / logcN

O(logn) => 对数时间复杂度,与底数无关

任意算法,若是不断除以任何数字,最终等于0或者1,这个算法的执行次数就是O(logn)

计算阶乘递归factorial的时间复杂度?
// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
	return N < 2 ? N : factorial(N-1) * N; 
}

一个递归函数的时间复杂度,要把这个递归函数展开,看一下递归的次数与变量N的关系
N ∗ N − 1 ∗ N − 2 ∗ . . . ∗ 1 = > 乘 了 N 次 。 执 行 N 次 , O ( N ) N * N - 1 * N - 2 * ... * 1 => 乘了N次。执行N次,O(N) NN1N2...1=>NNO(N)

计算斐波那契递归fibonacci的时间复杂度?
// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
 return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

f i b o ( n ) = f i b o ( n − 1 ) + f i b o ( n − 2 ) fibo(n) = fibo(n-1) + fibo(n-2) fibo(n)=fibo(n1)+fibo(n2)

在这里插入图片描述

等 比 数 列 求 和 : S   n   = a 1 − a n q 1 − q 等比数列求和:S~n~ = \frac{a_1 - a_nq}{1-q} S n =1qa1anq
运用等比公式求得总共方块个数为 2n-1 个方块,时间复杂度为O(2n)

重点

重 点 掌 握 O ( 1 ) O ( N ) O ( N 2 ) O ( l o g   n )   一 个 算 法 一 般 来 说 只 需 要 看 循 环 就 行 重点掌握\quad O(1)\quad O(N)\quad O(N^2) \quad O(log\space n)\space 一个算法一般来说只需要看循环就行 O(1)O(N)O(N2)O(log n) 


空间复杂度

所谓的空间复杂度指的是算法在执行过程中”额外“开辟的内存空间!!!

判断方法

就看算法中有没有额外开辟“数组”空间 new一个数组

一般对象也是O(1)

for (int i = 0; i < 10; i++) {
    for (int i = 0; i < 100; i++) {//变量变的是值不是内存

    }
}

变量变的是值不是内存

所以还是O(1)

例题

计算bubbleSort的空间复杂度?
// 计算bubbleSort的空间复杂度?
    void bubbleSort(int[] array) {//这是外部传入的数组,不是算法自己产生的数组,不算空间复杂度的一部分
        for (int end = array.length; end > 0; end--) {
            boolean sorted = true;
            for (int i = 1; i < end; i++) {
                if (array[i - 1] > array[i]) {
                    Swap(array, i - 1, i);
                    sorted = false; }
            }
            if (sorted == true) {
                break;
            }
        }
    }
计算fibonacci的空间复杂度?
// 计算fibonacci的空间复杂度?
    int[] fibonacci(int n) {
        long[] fibArray = new long[n + 1];
        fibArray[0] = 0;
        fibArray[1] = 1;
        for (int i = 2; i <= n; i++) {
            fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
        }
        return fibArray;
    }

长度为n+1的long数组

这个数组就是存储从1,…n的斐波那契数

这个算法的空间复杂度为 O(N)

计算阶乘递归Factorial的空间复杂度?
// 计算阶乘递归Factorial的空间复杂度?
    long factorial(int N) {
        return N < 2 ? N : factorial(N - 1) * N;
    }

每次函数的调用过程,就对应一个函数的“栈帧”在栈中的入栈过程,递归函数调用几次,就需要开辟多少个栈帧空间,每个栈帧使用了常数个空间。空间复杂度为O(N)

计算test的空间复杂度
public void test(int n) {
    if (n == 1) {
        return;
    }
    int[] data = new int[n];
    test(n--);
}

O(N2):总共执行了N次,每个函数的内部都会开辟大小为n的数组,乘起来就是N2

开辟N个栈帧,在每个栈帧里每次都开辟大小为N的整形数组

就是方法中有没有额外开辟空间的问题

  • 就定义了几个临时变量,O(1)

  • 定义了一堆变量,且这些变量的个数与N有关,int[] data = new int[n] => O(N)

总结

空间复杂度99%就两种:
O ( 1 ) 和 O ( N ) O(1)\quad 和\quad O(N) O(1)O(N)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值