Spark:repartition和coalesce

repartition底层调用的是coalesce(true)

一定具有shuffle,它一般是将少分区变化为多分区

repartition底层调用了mappartitionsRDD将传入的函数key生成随机数,value是数据本身

shuffleRDD将随机生成的key进去你指定的分区--使用Hashpartition

coalesceRDD将迭代器压平

mapPartition-将value数据取出

-----------------------------------------------

运用场景,coalesce传入false和true,不产生shuffle和产生shuffle

coalsece(true/false)产生shuffle和不产生shuffle

当传入false的时候,传入的分区数,必须比父RDD的分区数少,才能改变分区数,如果大于分区数,传入的值无效

repartition必定产生shuffle.因为底层调用的是coalesce(true)

如果是减少分区数量建议采用coalesce(numPartitions, false)方法,这样可以避免shuffle导致数据混洗,从而提高效率!


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值