传统制导律设计,无智能算法,无微分对策。
TODO:
- 横向加速度,轴向加速度
- PPN,APN
- 卡尔曼滤波
题目:主动飞机防御的预测制导策略
Predictive Guidance Strategies for Active Aircraft Defense
期刊:AIAA 2019 EI检索
分类:三体问题
摘要
问题:飞机(目标)主动发射防御导弹(防御者)来拦截攻击导弹(攻击者) 预测潜在的碰撞点
方法:基于迭代的计算方法 经典制导律 高速进攻者转换为低速伪目标
- 实时运动状态
- 预测拦截位置得到伪目标
- 通过滤波器估计速度和加速度
效果:
- 更短的拦截时间和覆盖距离
- 需要较小的命令横向加速度
- 目标机动越大,脱靶距离越小?
0.绪论
飞机的主动防御,由于防御者和攻击者之间的相对速度较高,主动拦截器需要具有大拦截包络和高鲁棒性的先进制导律
防御者制导律设计:
-
基于视线的制导律(LOS):防御者能保持在目标和攻击者的连线上,那么防御成功。
- 缺点:要求防御者的速度不低于攻击者的速度,且对手信息完整
-
最优控制
-
微分博弈
-
通过求解相关微分 Riccati 方程并利用多目标优化提出制导律,从而得到数值解
-
LQDG问题的解析解
-
作者在这里从硬件上假设导弹上高性能机载制导计算机已经开发出来,实际上这和我们做制导的没什么关系。。。
采用的方法主要是数值迭代,通过三体问题中智能体的实时运动状态计算防御者和攻击者未来的碰撞点,将预测的碰撞点设置为防御者的伪引导目标,作者认为这种通过计算得到的伪目标位置变化速度比攻击者速度变化慢很多(还是需要很强大的算力),设计的目标跟踪估计器可以将拦截高速的攻击者转化为拦截这个通过计算得到的伪目标。
1.数学模型
对于三体问题来说,智能体的运动学和动力学模型以及假设很重要,这部分工作做不好很影响制导律的设计!!!
交战几何
对于T(Target)、D(Defender)、A(Attacker)来说,状态向量都为:
分别来讲:
- 对于T来说, x T x_T xT完全可知,且未来加速度也可以通过机动策略得到。
- 对于D来说, x D x_D xD完全可知
- 对于A来说, r A r_A rA和 v A v_A vA完全可知, a A a_A aA未知
假设:
- T、D、A速度衰减
- 阻力系数和速度平方的乘积
- 机动衰减系数和横向加速度平方的乘积
TODO:横向加速度,轴向加速度
-
初速度:
-
指令加速度:
- 有最大过载限制
∣
a
i
∣
<
a
i
m
a
x
,
i
=
{
T
,
A
,
D
}
\left | \boldsymbol{a_i} \right |<a_i^{max}, i =\{T,A,D\}
∣ai∣<aimax,i={T,A,D}
- 有最大过载限制
∣
a
i
∣
<
a
i
m
a
x
,
i
=
{
T
,
A
,
D
}
\left | \boldsymbol{a_i} \right |<a_i^{max}, i =\{T,A,D\}
∣ai∣<aimax,i={T,A,D}
-
无响应时间
运动方程
这块很好理解,完全是高中物理的内容。
制导模型
基于增强比例导引法(The augmented proportional navigation, APN)设计的
TODO:真比例导引,纯比例导引等比例导引法的系统学习,未来再🕊
总结:总的来说模型还是没上动力学,给了过载限制,得考虑一下毕设的三体数学模型如何设计。
2.制导策略
预测制导策略——拦截点的选择——伪目标的推导
数学模型对于文章来说如果是地基的话,那这部分内容对于文章来说算是心脏部分。。。
预测制导策略
策略1:在推导引导算法之前估计A的加速度
对A加速度估计不够准确,但是这个估计误差能够在迭代过程中消除,逐渐收敛。
TODO:这里的n是个参数吗?
策略2:同时解决两个拦截过程
预测D和A未来碰撞点P*,P*看为是一个虚拟的移动物体,通过滤波器估计P*的移动速度和加速度。
通过下图(黑盒函数)来确定P*的全运动状态:
TODO:黑盒函数如何设计?
与之前的策略1相比,策略2更接近本文利用迭代计算方法解决复杂主动防御问题的思想。因此,我们主要使用策略2作为前瞻性预测指导策略来进行模拟。
(所以策略1是用来对比的吗?hhh)
拦截点P*的计算(黑盒函数的设计)
这里需要注意的是红框内的内容,判断条件当A和D的接近速度为负数时,此时A的位置为伪目标 P k ∗ P_k^* Pk∗k时刻的位置。
伪目标P*信息滤波
卡尔曼滤波的两部分:预测和更新
预测:
-
状态预测:
-
协方差预测:
更新:
时间更新:
测量更新:
- 卡尔曼增益 K k K_k Kk
- 状态估计更新,基于 x k ∣ k − 1 x_{k|k-1} xk∣k−1和观测值 y k y_k yk
- 状态协方差更新
TODO:卡尔曼滤波
3.仿真实验
MATLAB Simulink ode4
步长:0.001
D采用PPN和APN时制导律增益: N D = 3 N_D=3 ND=3
过程噪声协方差矩阵: V = 0.1 ⋅ I 3 V=0.1\cdot I_3 V=0.1⋅I3
测量噪声协方差矩阵: W = I 3 W=I_3 W=I3
四种打击场景:
- 前两种方位角较小(正面打击)
- 后两者方位角较大(侧面攻击)
场景1:与非机动目标飞机正面交战, φ = 5. 2 ∘ \varphi=5.2^{\circ} φ=5.2∘
D在时间t=0时发射,发射方向与目标飞机的航向一致
T:无机动
A:PPN, N A = 4 + sin t N_A=4+\sin t NA=4+sint
D:PPN,APN,PGS
轨迹更直,更少的控制动作,优于经典的控制律。
场景2:与机动目标飞机正面交战, φ = 5. 2 ∘ \varphi=5.2^{\circ} φ=5.2∘
T: ∣ a T 0 ∣ = 3 g |a_{T0}|=3g ∣aT0∣=3g,加速度为3g
A:APN(由于APN能有效打击机动对象), N A = 4 + sin t N_A=4+\sin t NA=4+sint
D:PPN,APN,PGS
场景3:与非机动目标飞机的侧面攻击交战, φ = 89.47 9 ∘ \varphi=89.479^{\circ} φ=89.479∘
T:无机动
A:APN(由于APN能有效打击机动对象), N A = 4 + sin t N_A=4+\sin t NA=4+sint
D:PPN,APN,PGS
当航向误差较大的情况下使用PPN和APN法时,路径较长;初始横向加速度起初很小,然后逐渐增大。
但PGS的指令加速度开始时较大,最终变小,因此总体控制工作量较小。
场景4:与机动目标飞机的侧面攻击交战, φ = 89.47 9 ∘ \varphi=89.479^{\circ} φ=89.479∘
T: ∣ a T 0 ∣ = 3 g |a_{T0}|=3g ∣aT0∣=3g,加速度为3g
A:APN(由于APN能有效打击机动对象), N A = 4 + sin t N_A=4+\sin t NA=4+sint
测量A位置时添加高斯白噪声作为测量误差
D:PPN,APN,PGS
脱靶量小,用时短,覆盖距离短,过载小
所以这里的策略1是来搞笑的吗,最后完全没用,哪怕做个对比仿真呢。。。