优先队列相关操作
注意,优先队列(priority queue)也叫做堆(heap)。谈到优先队列时,一般强调其功能或应用,谈到堆时,一般强调其树形结构,但这两个词是可以进行同义替换的,大部分时候不用做严格区分。
在python中,我们使用内置库heapq
来实现优先队列的相关操作。需要先导入heapq
库。即
from heapq import *
或者
from heapq import heapify, heappush, heappop # 导入最常用的三个API
虽然优先队列的底层原理是用完全二叉树来实现的,但由于完全二叉树通过层序遍历(即树的BFS)可以得到序列化的结果(即数组),故通常而言我们无需显式地构建出一棵完全二叉树来实现堆,而是使用heapq
内置库来对一个列表进行堆化和堆操作。
堆化
使用heapq
内置库中的内置函数heapify()
来实现一个列表的堆化。所谓堆化,是指令一个列表按照堆排序的要求来排序的过程。
heap = [1, 3, 4, 2] # 构建一个叫做heap的列表
heapify(heap) # 令heap堆化
print(heap) # 输出[1, 2, 4, 3],是heap按照堆排序后的结果
从单词heapify()
也可以看出,这是一个动词,故该函数是功能对heap
列表进行原地排序,没有返回值。
堆化/堆排序的时间复杂度是O(NlogN)
入堆
使用heapq
内置库中的内置函数heappush(heap, element)
来实现将元素element
加入堆heap
中。
heap = [1, 3, 4, 2] # 构建一个叫做heap的列表
heapify(heap) # 令heap堆化
heappush(heap, 5) # 令元素5入堆
print(heap) # 输出[1, 2, 4, 3, 5],是5入堆后的结果
heappush(heap, 0) # 令元素0入堆
print(heap) # 输出[0, 2, 1, 3, 5, 4],是0入堆后的结果
入堆操作的时间复杂度为O(logN)
。heappush()
函数是没有返回值的。
出堆
使用heapq
内置库中的内置函数heappop(heap)
来实现弹出堆heap
的堆顶元素。
heap = [0, 1, 2, 3, 4, 5] # 构建一个叫做heap的列表
heapify(heap) # 令heap堆化
top = heappop(heap) # 弹出堆顶元素
print(top, heap) # 输出0和[1, 3, 2, 5, 4],是堆顶元素0出堆后的结果
top = heappop(heap) # 弹出堆顶元素
print(top, heap) # 输出1和[2, 3, 4, 5],是堆顶元素1出堆后的结果
出堆操作的时间复杂度为O(logN)
。heappop()
函数是有返回值的,返回出堆的堆顶元素。
获取堆顶元素
堆顶元素总是位于列表heap
索引为0
的位置,故直接使用索引操作即可获得堆顶元素。
heap = [5, 4, 2, 0, 3, 1] # 构建一个叫做heap的列表
heapify(heap) # 令heap堆化
print(heap[0]) # 输出堆顶元素0
小根堆与大根堆
小根堆是指较小值具有更高优先级的堆,在树形结构上体现为,每一个节点的值都小于其子节点的值。
大根堆是指较大值具有更高优先级的堆,在树形结构上体现为,每一个节点的值都大于其子节点的值。
在python的heapq
库中,默认的操作是构建****小根堆。
如果想要构建一个大根堆,可以通过储存元素相反值的方式来构建一个伪大根堆,即实际上仍然按照小根堆来操作,但由于储存了相反数,原先的最大值会变成绝对值最大的最小值而储存在堆顶。如
heap = [0, 1, 2, 3, 4, 5] # 构建一个叫做heap的列表
heap = [-num for num in heap] # 储存相反数
heapify(heap) # 令heap堆化,得到一个伪大根堆
top = -heappop(heap) # 弹出堆顶元素,再取反,可以得到原heap中的最大值
print(top, heap) # 输出5和[-4, -3, -2, 0, -1],是堆顶元素-5出堆后的结果
heappush(heap, -10) # 往堆中存入元素10,应该存入其相反数-10
print(heap) # 输出[-10, -3, -4, 0, -1, -2],可以看到-10位于堆顶heap[0]的位置
华为OD算法/大厂面试高频题算法练习冲刺训练
-
华为OD算法/大厂面试高频题算法冲刺训练目前开始常态化报名!目前已服务100+同学成功上岸!
-
课程讲师为全网50w+粉丝编程博主@吴师兄学算法 以及小红书头部编程博主@闭着眼睛学数理化
-
每期人数维持在20人内,保证能够最大限度地满足到每一个同学的需求,达到和1v1同样的学习效果!
-
60+天陪伴式学习,40+直播课时,300+动画图解视频,300+LeetCode经典题,200+华为OD真题/大厂真题,还有简历修改、模拟面试、专属HR对接将为你解锁
-
可上全网独家的欧弟OJ系统练习华子OD、大厂真题
-
可查看链接 大厂真题汇总 & OD真题汇总(持续更新)
-
绿色聊天软件戳
od1336
了解更多