Python人工智能PyTorch教程-PyTorch等(GPU版本)安装

系列文章目录

第一章 Python人工智能PyTorch教程-PyTorch等(GPU版本)安装
第二章 Python人工智能PyTorch教程-简单的灰度手写数字0-9图片神经网络识别
第三章 Python人工智能PyTorch教程-手写数字0-9图片卷积神经网络识别



前言

随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就Python人工智能Python教程的安装,包括torch、TorchVision、torchaudio三个GPU版本的详细的安装。


提示:以下是本篇文章正文内容,下面案例可供参考

一、GPU和CPU的区别以及CUDA的简单解释

简单的说:CPU和GPU都包含运算器、控制器、缓存,但是在GPU中运算器占大部分,因此GPU运算能力强,在机器人学习中,较好理解,最好都把运算过程用GPU来处理,而CUDA类似作为中介,将原本CPU处理的运算转交给GPU来处理。因此,在安装
torch、TorchVision、torchaudio三个GPU版本的安装之前,需要安装CUDA

二、前期准备,关于CUDA

1、检查是否独立显卡:
我的电脑右键-管理-设备管理器-显示适配器
只要看到NVIDIA开头的,就说明是独立显卡,可以用GPU来运算。
在这里插入图片描述
2、查看CUDA最大可安装版本
CMD命令行输入 nvidia-smi 结果如下,最大可安装版本是:12.4

在这里插入图片描述

3、去网上找一个低于12.4的CUDA版本安装

4、安装完成后,查看已安装版本,笔者安装版本是12.1:
CMD命令行输入:nvcc -V(注意是大写的V)
在这里插入图片描述

三、安装torch、TorchVision、torchaudio三个GPU版本

1、简单安装,直接输入网址 https://pytorch.org/ 选择合适的版本(系统类型、CUDA版本、编程语言等等),复制最下面安装命令栏即可。
在这里插入图片描述

2、详细分别安装:
a)输入网址 https://download.pytorch.org/whl/
在这里插入图片描述

b)在目录下选择torch
c) 查看已安装Python 版本,cmd命令行python,笔者电脑是3.11.4
在这里插入图片描述

d)网页 ctrl+f 搜索 cu121+cp311 (CUDA版本是12.1,python版本是3.11),笔者选择torch-2.3.1+cu121-cp311-cp311-win_amd64(win表示window版本)
在这里插入图片描述

c)下载后,使用pip install命令安装,格式为pip install 下载的安装位置\安装包名称

在这里插入图片描述

3、torchaudio的安装方式和上述类似,版本和torch一致,笔者安装
torchaudio-2.3.1+cu121-cp311-cp311-win_amd64

4、TorchVision的安装也需要和torch的版本匹配,如匹配不上,则报错。torch-2.3.1对应的版本是:
torchvision-0.18.1+cu121-cp311-cp311-win_amd64

5、最终安装成功查看cmd命令行pip list
在这里插入图片描述


总结

到此,已成功安装安装torch、TorchVision、torchaudio三个GPU版本,方便下一步进行人工智能开发

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值