图解Floyd判圈算法 | 判断链表或者迭代函数是否有环 | Java代码

🙋大家好!我是毛毛张!
🌈个人首页: 神马都会亿点点的毛毛张
📌今天毛毛张分享的是Floyd判圈算法🎄,这是刷LeetCode必备基础算法理论!🥥

1.Floyd判圈算法概述🍇

  • 🍑定义: Floyd判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm),是一个可以在有限状态机、迭代函数或者链表上判断是否存在环,以及判断环的起点与长度的算法🍏
  • 🍒算法思想:
    1. 有限时间内快慢指针必然相遇且相遇点在环上1️⃣
    2. 相遇点和起点的等速指针将在环的入口处相遇2️⃣
  • 🍓算法作用:
    • 判断迭代函数或者链表上面是否有环1️⃣
    • 如果有环可以找到环的起点2️⃣
    • 如果有环可以计算环的长度3️⃣
  • 🫐这个算法只需要大家了解其原理就行,毛毛张在这里不做严密的逻辑推导,而是通过推介举例的方式来帮助大家理解这个算法

2.如何判断是否有环🍉


有限时间内快慢指针必然相遇且相遇点在环上

  • 由于这个算法的另外一个名称是龟兔赛跑算法,因此毛毛张就拿龟兔赛跑的例子来举例说明:
    • 假设:我们可以假设有乌龟和兔子在一个跑道上比赛跑步,我们默认兔子的跑步速度是快于乌龟的
    • 如果是直线型跑道,两者同时从起点出出发,中途乌龟是永远追不上兔子的,直到涂子到达终点
    • 如果是环形跑道,两者同时从起点出发,经过有限的时间内,兔子会追上乌龟,两者相遇,如果运动过程中兔子的速度是乌龟速度的两倍,那么两者第一次相遇时,兔子的路程就是乌龟路程的两倍
  • 上面这个例子是小学问题中一个很简单的相遇和追及问题,我们回到这个算法本身:
    • 假设兔子就是那个快指针fast,每次走两步,乌龟就是那个慢指针slow,每次走一步
    • 如果链表或者迭代函数没用环,那么快指针迭代到终点,在此过程中,两个指针是不会相遇
    • 如果链表或者迭代函数有环,那么快指针在迭代过程中一定会追上慢指针
  • 图解:
    image-20240809104404465

3.如何找到环的起点🍍


相遇点和起点的等速指针将在环的入口出相遇

  • 在上面的问题中,我们假设快指针的速度是慢指针的两倍,那么在相同时间内,第一次相遇的时候,快指针走过的距离为2n,慢指针走过的距离为n,因此单位时间内快指针比慢指针多走一个 n n n于是我们让慢指针回到起点,快指针还在相遇点,即让快指针先走 n n n的距离;然后让两个指针的前进速度相同,区分为前指针和后指针

  • 图解:
    image-20240810201955223

4.计算环的长度🥭

  • 顺着找到环的入口的思路,我们可以得到**方式1:**在找到环的入口后,一步一步遍历回到起点时,走过的距离就是环的长度
  • 顺着判断是否有环的思路,我们可以得到方式2: 在找到相遇点之后,继续执行并重新对快慢指针进行计步,直到快慢指针第二次相遇,此时快指针比慢指针多走的距离就是环的长度
  • 方式3: 当快慢指针相遇之后,让快指针一步一步遍历回到相遇点时,走过的距离就是环的长度

5.代码实现🍎

class ListNode {
    int val;
    ListNode next;

    ListNode(int val) {
        this.val = val;
        this.next = null;
    }
}

public class LinkedListCycle {

    // 生成一个有环的链表,环的长度为5
    public static ListNode createCyclicLinkedList() {
        ListNode head = new ListNode(1);
        ListNode second = new ListNode(2);
        ListNode third = new ListNode(3);
        ListNode fourth = new ListNode(4);
        ListNode fifth = new ListNode(5);
        ListNode sixth = new ListNode(6);

        head.next = second;
        second.next = third;
        third.next = fourth;
        fourth.next = fifth;
        fifth.next = sixth;
        sixth.next = third; // 第三个节点为环的入口,环的长度为5

        return head;
    }

    // 判断链表是否有环
    public static boolean hasCycle(ListNode head) {
        if (head == null || head.next == null) return false;

        ListNode slow = head;
        ListNode fast = head;

        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;

            if (slow == fast) {
                return true;
            }
        }

        return false;
    }

    // 找到环的入口
    public static ListNode detectCycle(ListNode head) {
        if (head == null || head.next == null) return null;

        ListNode slow = head;
        ListNode fast = head;

        // 先判断是否有环
        boolean hasCycle = false;
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;

            if (slow == fast) {
                hasCycle = true;
                break;
            }
        }

        // 如果没有环,返回null
        if (!hasCycle) {
            return null;
        }

        // 找到环的入口
        slow = head;
        while (slow != fast) {
            slow = slow.next;
            fast = fast.next;
        }

        return slow;
    }

    // 计算环的长度
    public static int getCycleLength(ListNode head) {
        if (head == null || head.next == null) return 0;

        ListNode slow = head;
        ListNode fast = head;

        // 先找到相遇点
        boolean hasCycle = false;
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;

            if (slow == fast) {
                hasCycle = true;
                break;
            }
        }

        // 如果没有环,返回0
        if (!hasCycle) {
            return 0;
        }

        // 从相遇点开始计算环的长度
        int cycleLength = 0;
        do {
            slow = slow.next;
            cycleLength++;
        } while (slow != fast);

        return cycleLength;
    }

    public static void main(String[] args) {
        ListNode cyclicList = createCyclicLinkedList();

        System.out.println("Has cycle: " + hasCycle(cyclicList));
        ListNode cycleEntry = detectCycle(cyclicList);
        System.out.println("Cycle entry node value: " + (cycleEntry != null ? cycleEntry.val : "No cycle"));
        System.out.println("Cycle length: " + getCycleLength(cyclicList));
    }
}

6.练习题🍌

参考文献

  • 22
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神马都会亿点点的毛毛张

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值