【线性代数入门3】基于R的线性模型和矩阵代数

本文介绍了如何使用R语言进行线性模型和矩阵运算,包括解方程组、矩阵乘以标量、转置、矩阵乘法、身份矩阵和逆矩阵的概念与应用。特别强调了矩阵在解决线性方程组中的作用,以及在R中使用solve函数求逆矩阵的方法。
摘要由CSDN通过智能技术生成

*声明:本章部分内容基于Havard的课程Introduction to Linear Models and Matrix Algebra。本文章和后续文章主要是融合部分海外经典课程内容和自己的一些思考进行介绍和讨论。起步小白,DS预备役,如有错误欢迎指正!

目录

第三讲 矩阵运算 Matrix Operations

1. 解方程

2. 几种矩阵运算

(1)矩阵乘以标量 Multiplying by a scalar

(2)矩阵转置 The Transpose

(3)矩阵乘法 Matrix Multiplication

(4)纯量矩阵/恒等矩阵/单位矩阵 The Identity Matrix

(5)逆矩阵 The Inverse


第三讲 矩阵运算 Matrix Operations

1. 解方程

        矩阵运算是很重要的部分,我们可以利用它来解决很多问题,下面以解方程组为例。

        现有一个方程组:

a+b+c=6

3a-2b+c=2

2a+b-c=1

        用矩阵代数的符号来表示就是:

代入程序:

> #solving equations
> x<-matrix(c(1,3,2,1,-2,1,1,1,-1),3,3)
> y<-matrix(c(6,2,1),3,1)
> solve(x)%*%y ##equivalent to solve(x,y)
     [,1]
[1,]    1
[2,]    2
[3,]    3

得到a=9, b=15, c=13.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值