运用Matlab进行遗漏变量回归的蒙特卡洛模拟检验

运用Matlab进行遗漏变量回归的蒙特卡洛检验

蒙特卡洛检验原理

利用生成的随机数计算自己想要的数值,视问题采用相适应的随机数生成过程,包括但不限于随机数服从的概率分布类型,分布的数字特征。

遗漏变量下回归

对于多元线性回归模型,遗漏关键变量通常会产生有偏的系数估计和不一样的系数估计值的标准误。
真实模型
遗漏变量x2
偏误的大小和两个条件方差的大小关系,都受x1,x2之间的相关度和x2对y的偏效应大小这两个因素的影响
影响路径

两个结论
结论1
结论2

蒙特卡洛模拟检验

%二元线性回归模式的蒙特卡洛检验
%作者:蘋末
%日期:2020/5/25
%版本:4.0
%两个变量符
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值