运用Matlab进行遗漏变量回归的蒙特卡洛检验 蒙特卡洛检验原理 遗漏变量下回归 蒙特卡洛模拟检验 检验结果 蒙特卡洛检验原理 利用生成的随机数计算自己想要的数值,视问题采用相适应的随机数生成过程,包括但不限于随机数服从的概率分布类型,分布的数字特征。 遗漏变量下回归 对于多元线性回归模型,遗漏关键变量通常会产生有偏的系数估计和不一样的系数估计值的标准误。 偏误的大小和两个条件方差的大小关系,都受x1,x2之间的相关度和x2对y的偏效应大小这两个因素的影响 两个结论 蒙特卡洛模拟检验 %二元线性回归模式的蒙特卡洛检验 %作者:蘋末 %日期:2020/5/25 %版本:4.0 %两个变量符