【论文推荐】了解《多模态处理》必看的6篇论文(附打包下载地址)

北京大学博士生任抒怀推荐的6篇多模态处理领域论文,涵盖单流、双流预训练模型,实体标签加强语义对齐,以及关系一致性假设等,提升跨模态检索性能。
摘要由CSDN通过智能技术生成

9f56ef54613cfd531bbc05a5a7842042.png

论文推荐

SFFAI126期来自北京大学信息科学技术学院计算语言学研究所二年级博士生任抒怀推荐的文章主要关注于基础研究的多模态处理领域,你可以认真阅读讲者推荐的论文,来与讲者及同行线上交流哦。

关注文章公众号

回复"SFFAI126"获取本主题精选论文

01

cf18a8a6b9a5652bff412164c2da5e71.png

推荐理由:单流多模态预训练的经典之作。

02

3043eb904355992bed5f1e50c930e812.png

推荐理由:双流多模态预训练的经典之作。

03

ff0339a645bc6af24ebe1c2cd4806278.png

推荐理由:提出了统一单流、双流多模态预训练的框架。对单、双流架构中的注意力机制进行了详细分析。

04

10568cd052a0fb096ae985130117c5f8.png

推荐理由:提出在多模态预训练中加入实体标签,以加强语言和视觉中的实体语义对齐。

05

0376bea37b4f8932ddd8bd37da2e1ef9.png

推荐理由:使用基于patch的ViT而非基于object的Faster RCNN进行图片特征编码,取得60倍的提速。

06

b27bbabf2c82d7bfdab2fa4c31779f89.png

推荐理由:OpenAI的CLIP。将图片分类任务建模为匹配形式,把图片标签换成对应的文本描述,并利用对比学习进行大规模预训练,取得了良好的zero-shot效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值