B-样条基函数的定义及其导函数
定义:给定参数轴的一个部分用下列递推方式所确定的函数称为相应于部分的次,即p+1阶B样条基函数:
我们称该式为de Boor-Cox公式,称为节点序列或节点向量,称为节点。若,则称为U的重节点。
B样条基函数求导公式
下面我们使用数学归纳法对基函数进行求导:
对于,很显然我们可以得到其导数为或者
对于,假设(这里k为方程的次数)时有
当时
至此,B样条基函数求导过程结束啦!
B-样条曲线的定义及其导函数
定义:设有个空间向量是定义在节点向量上的次B样条基函数,则称
为相应于节点向量的次非均匀的B样条曲线,称为控制顶点,折线为控制多变形。
B样条曲线求导公式
详细推导如下:
对于给定的,可以注意到,因此有
小编要来给大家解释一下为什么。
根据基函数的局部支集性即
我们来看;所以是合理的。
(不知道小编的解释是否合理,因为小编也是自学研究的这个,所以若有更好的解释评论区见)
B样条曲面的定义及其导函数
定义:给定个空间向量,和分别为定义在节点向量和上的一元次和次B样条基函数,则与其相应的张量积曲面
称为一个次B样条曲面。称为控制顶点,依次用直线段连接同行同列相邻两个控制点所得的折线网格称为控制网格。
B样条曲面的求导公式
先引入曲面基函数求导公式,如下:
B样条曲面求导公式如下(推导过程类比B样条曲线推导)
最近在看论文时发现好多文章会使用这个条件对B样条曲面求导公式进行简化,下面我带大家继续推导一下(假设此时=5)
和是由节点向量生成的五次B样条基函数,我们假设
的左边界节点0的重数为5,根据重节点的差值基函数性质,只有,即,其余均为0,所以
的左边界节点0的重数为6,根据重节点的差值基函数性质,只有,即,其余均为0,所以
综上,小编想要分享给大家的就结束啦!若有任何疑问或者有任何的建议都可以在评论区留言,大家和小编一起进步!