本文记录的是刷题过程中的重要概念和笔记。如有侵权,请联系删除。
84. 柱状图中最大的矩形
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
示例2:
暴力法
双指针法
类似前题,但是本题要记录记录每个柱子 左边第一个小于该柱子的下标,而不是左边第一个小于该柱子的高度。
用之前单调栈的方式
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
if(heights.size()==0) return 0;
// -1进行初始化,表示左边没有更大的数字,右边没有更小的数字可以用size
stack<int> st;
vector<vector<int>> record(heights.size(),vector<int>(2,-1));
// 计算出右边第一个更小的数字
st.push(0);
for(int i=1;i<heights.size();i++){
while(!st.empty() && heights[i]<heights[st.top()]){
record[st.top()][1]=i;
st.pop();
}
st.push(i);
}
// 计算出左边第一个更小的数字
while(!st.empty()) st.pop();
st.push(heights.size()-1);
for(int i=heights.size()-2;i>=0;i--){
while(!st.empty() && heights[i]<heights[st.top()]){
record[st.top()][0]=i;
st.pop();
}
st.push(i);
}
// 计算面积
int max=0;
int count;
for(int i=0;i<heights.size();i++){
if(record[i][1]==-1) record[i][1]=heights.size();
count=heights[i]*(record[i][1]-record[i][0]-1);
if(count>max) max=count;
// cout<<count<<endl;
}
return max;
}
};
用数组的方式
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
vector<int> minLeftIndex(heights.size());
vector<int> minRightIndex(heights.size());
int size = heights.size();
// 记录每个柱子 左边第一个小于该柱子的下标
minLeftIndex[0] = -1; // 注意这里初始化,防止下面while死循环
for (int i = 1; i < size; i++) {
int t = i - 1;
// 这里不是用if,而是不断向左寻找的过程
while (t >= 0 && heights[t] >= heights[i]) t = minLeftIndex[t];
minLeftIndex[i] = t;
}
// 记录每个柱子 右边第一个小于该柱子的下标
minRightIndex[size - 1] = size; // 注意这里初始化,防止下面while死循环
for (int i = size - 2; i >= 0; i--) {
int t = i + 1;
// 这里不是用if,而是不断向右寻找的过程
while (t < size && heights[t] >= heights[i]) t = minRightIndex[t];
minRightIndex[i] = t;
}
// 求和
int result = 0;
for (int i = 0; i < size; i++) {
int sum = heights[i] * (minRightIndex[i] - minLeftIndex[i] - 1);
result = max(sum, result);
}
return result;
}
};
单调栈(前一题的变式,比较难理解)
因为本题是要找每个柱子左右两边第一个小于该柱子的柱子,所以从栈头(元素从栈头弹出)到栈底的顺序应该是从大到小的顺序!
上题的思路:
核心要点
- 单调栈内从栈底到栈顶的元素是从小到大,因此记录了左边第一个比自己小的元素。进出站的过程中获取了右边第一个比自己小的元素。再选择自身的高度作为矩形的高。从而计算面积。
- vector没有push_front()的方法。
- 头尾要加上0,否则存在元素没有处理。
- 基于上述的方法,遇到比栈顶小的元素就可以开始处理栈顶了;遇到比栈顶大的就入栈;相等的可以忽略不处理。
// 版本一
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int result = 0;
stack<int> st;
heights.insert(heights.begin(), 0); // 数组头部加入元素0
heights.push_back(0); // 数组尾部加入元素0
st.push(0);
// 第一个元素已经入栈,从下标1开始
for (int i = 1; i < heights.size(); i++) {
if (heights[i] > heights[st.top()]) { // 情况一
st.push(i);
} else if (heights[i] == heights[st.top()]) { // 情况二
st.pop(); // 这个可以加,可以不加,效果一样,思路不同
st.push(i);
} else { // 情况三
while (!st.empty() && heights[i] < heights[st.top()]) { // 注意是while
int mid = st.top();
st.pop();
if (!st.empty()) {
int left = st.top();
int right = i;
int w = right - left - 1;
int h = heights[mid];
result = max(result, w * h);
}
}
st.push(i);
}
}
return result;
}
};
注意开头结尾都加上了0
精简版:
// 版本二
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
stack<int> st;
heights.insert(heights.begin(), 0); // 数组头部加入元素0
heights.push_back(0); // 数组尾部加入元素0
st.push(0);
int result = 0;
for (int i = 1; i < heights.size(); i++) {
while (heights[i] < heights[st.top()]) {
int mid = st.top();
st.pop();
int w = i - st.top() - 1;
int h = heights[mid];
result = max(result, w * h);
}
st.push(i);
}
return result;
}
};
不能直接进行计算,不用left
过不了的例子如下: