代码:
from __future__ import division import matplotlib.pyplot as plt import cv2 import os, glob import numpy as np from PIL import Image from keras.applications.imagenet_utils import preprocess_input from keras.models import load_model from keras.preprocessing import image from Parking import Parking import pickle cwd = os.getcwd() def img_process(test_images,park): white_yellow_images = list(map(park.select_rgb_white_yellow, test_images)) park.show_images(white_yellow_images) gray_images = list(map(park.convert_gray_scale, white_yellow_images)) park.show_images(gray_images) edge_images = list(map(lambda image: park.detect_edges(image), gray_images)) park.show_images(edge_images) roi_images = list(map(park.select_region, edge_images)) park.show_images(roi_images) list_of_lines = list(map(park.hough_lines, roi_images)) line_images = [] for image, lines in zip(test_images, list_of_lines): line_images.append(park.draw_lines(image, lines)) park.show_images(line_images) rect_images = [] rect_coords = [] for image, lines in zip(test_images, list_of_lines): new_image, rects = park.identify_blocks(image, lines) rect_images.append(new_image) rect_coords.append(rects) park.show_images(rect_images) delineated = [] spot_pos = [] for image, rects in zip(test_images, rect_coords): new_image, spot_dict = park.draw_parking(image, rects) delineated.append(new_image) spot_pos.append(spot_dict) park.show_images(delineated) final_spot_dict = spot_pos[1] print(len(final_spot_dict)) with open('spot_dict.pickle', 'wb') as handle: pickle.dump(final_spot_dict, handle, protocol=pickle.HIGHEST_PROTOCOL) park.save_images_for_cnn(test_images[0],final_spot_dict) return final_spot_dict def keras_model(weights_path): model = load_model(weights_path) return model def img_test(test_images,final_spot_dict,model,class_dictionary): for i in range (len(test_images)): predicted_images = park.predict_on_image(test_images[i],final_spot_dict,model,class_dictionary) def video_test(video_name,final_spot_dict,model,class_dictionary): name = video_name cap = cv2.VideoCapture(name) park.predict_on_video(name,final_spot_dict,model,class_dictionary,ret=True) if __name__ == '__main__': test_images = [plt.imread(path) for path in glob.glob('test_images/*.jpg')] weights_path = 'car1.h5' video_name = 'parking_video.mp4' class_dictionary = {} class_dictionary[0] = 'empty' class_dictionary[1] = 'occupied' park = Parking() park.show_images(test_images) final_spot_dict = img_process(test_images,park) model = keras_model(weights_path) img_test(test_images,final_spot_dict,model,class_dictionary) video_test(video_name,final_spot_dict,model,class_dictionary)
代码解读:
这段代码中包含了一个主程序,用于运行停车场车位检测的相关功能。具体的解释如下:
1. 导入所需的库
- `from __future__ import division`:导入division功能,用于在除法运算时得到浮点数结果。
- `import matplotlib.pyplot as plt`:导入matplotlib库的pyplot模块,用于绘图。
- `import cv2`:导入OpenCV库,用于图像处理和计算机视觉任务。
- `import os, glob`:导入os和glob库,用于处理文件路径。
- `import numpy as np`:导入numpy库,用于进行数值计算。
- `from PIL import Image`:从PIL库中导入Image模块,用于图像处理。
- `from keras.applications.imagenet_utils import preprocess_input`:从Keras库中导入preprocess_input模块,用于图像预处理。
- `from keras.models import load_model`:从Keras库中导入load_model模块,用于加载已经训练好的模型。
- `from keras.preprocessing import image`:从Keras库中导入image模块,用于图像处理。
- `from Parking import Parking`:导入自定义的Parking类,用于停车场车位检测。
- `import pickle`:导入pickle库,用于读写Python对象序列化。
- `cwd = os.getcwd()`:获取当前工作目录。
2. 定义函数img_process(test_images,park)
- 该函数用于进行图像处理的整个流程,包括选取白色和黄色区域、转换为灰度图像、边缘检测、选取感兴趣区域、进行霍夫直线检测、识别车位区域等操作。
- 参数test_images为待处理的测试图像列表,参数park为Parking类的实例。
- 函数内部先对图像进行一系列处理,最后返回每个车位的坐标信息。
3.定义函数keras_model(weights_path)
- 该函数用于加载已经训练好的Keras模型。
- 参数weights_path为模型的权重文件路径。
4.定义函数img_test(test_images,final_spot_dict,model,class_dictionary)
- 该函数用于对测试图像进行车位状态预测。
- 参数test_images为待预测的测试图像列表,参数final_spot_dict为车位坐标信息字典,参数model为已经加载的Keras模型,参数class_dictionary为车位状态的类别字典。
5.定义函数video_test(video_name,final_spot_dict,model,class_dictionary)
- 该函数用于对视频进行车位状态预测。
- 参数video_name为待预测的视频文件名,参数final_spot_dict为车位坐标信息字典,参数model为已经加载的Keras模型,参数class_dictionary为车位状态的类别字典。
6.主程序部分
- 首先定义了一些参数,包括测试图像列表test_images、模型权重文件路径weights_path、视频文件名video_name和车位状态的类别字典class_dictionary。
- 实例化了一个Parking类的对象park。
- 调用函数img_process对测试图像进行处理,返回车位坐标信息final_spot_dict。
- 调用函数keras_model加载Keras模型,返回模型对象model。
- 调用函数img_test对测试图像进行车位状态预测。
- 调用函数video_test对视频进行车位状态预测。
注意:
- 代码中的Parking类和其他函数实现并未给出,因此无法对具体实现细节进行解释。
- 如果需要运行该程序,需要添加Parking类及其相关函数的实现,并且保证所需的测试图像和视频文件存在。