业务
文章平均质量分 74
杬豆枷
大数据爱好者
展开
-
会员数据化运营分析小技巧(留存分析+AARRR+)
1.使用留存分析新用户质量用户留存指的是新会员/用户在经过一定时间之后,仍然具有访问、登录、使用或转化等特定属性和行为,留存率:留存用户占当时新用户的比例留存率按照不同的周期分为三类,以登录行为认定的留存为例:(1)日留存,细分:·次日留存率:(当天新增的用户中,第2天还登录的用户数)/第一天新增总用户数·第3日留存率:(第一天新增用户中,第3天还有登录的用户数)/第一天新增总用户数·第7日留存率:(第一天新增用户中,第7天还有登录的用户数)/第一天新增总用户数·第14日留存率:(第一天新增原创 2021-03-19 14:58:25 · 2441 阅读 · 0 评论 -
会员流失预测模型+会员特征分析模型+营销响应预测模型
会员流失预测模型常见的属于流失的状态定义示例:·会员已经退订公司的促销活动;·会员打电话要求将自己的信息加入通知黑名单;·会员已经连续6个月没有登录过网站;·针对会员发送的关怀激励活动中没有任何有效反馈和互动;·会员最近1年内没有任何订单。上述流失状态可以归为两类:一类是会员有明确的表达,不再希望接收到公司的相关信息;另一类是会员没有明确的表示,但是在业务关注的主要领域内,没有得到有效反馈。**算法:**会员流失预测模型的实现方法属于分类算法,常用算法包括逻辑回归、支持向量机、随机森林等原创 2021-03-19 13:43:16 · 2018 阅读 · 0 评论 -
会员数据化运营
会员数据化运营·会员的生命周期状态是什么;·会员的核心诉求是什么;·会员的转化习惯和路径是什么;·会员的价值如何;·如何扩大市场覆盖、获得更多的新会员;·如何更好地维系老会员;·应该在什么时间、采取何种措施、针对哪些会员做哪些运营活动;·在特定运营目标下,应该如何制定会员管理策略,包括行为管理、体验管理、增值服务、信息管理、营销管理、客户关怀等。应用场景会员营销·以信息化的方式建立基于会员的客户关系管理系统,促进所有会员数据的信息化;·通过特定方法将普通用户拓展企业会员,并提高新原创 2021-03-19 13:15:46 · 254 阅读 · 0 评论 -
RFM RFE
会员价值度模型RFM1,定义RFM模型是根据会员最近一次购买时间R(Recency)、购买频率F(Frequency)、购买金额M(Monetary)计算得出RFM得分,通过这三个维度来评估客户的订单活跃价值,常用来做客户分群或价值区分。该模型常用于电子商务(即交易类)企业的会员分析。基本实现过程:步骤1 设置要做计算时的截止时间节点(例如2017-5-30),用来做基于该时间的数据选取和计算。步骤2 在会员数据库中,以今天为时间界限向前推固定周期(例如1年),得到包含每个会员的会员ID、订单时原创 2021-03-19 00:55:34 · 676 阅读 · 0 评论 -
费米估算问题
1,全中国一年要消费多少猪肉(需求端)公式1:全中国一年的猪肉消费量=每天消费猪肉量全国人数一年的天数**公式2:**每天消费的猪肉量=每天消耗的肉量猪肉在肉类食材中的占比联想自己:一份辣椒炒肉能够干掉一餐米饭,结合买菜经验,我一餐的肉量(注意,是肉量,不是猪肉量)约100G。在这里联想一下在西餐店吃牛排,一块牛排的重量约100G-120G。那么可以更加确信的得到:每天消耗的肉量=100G2餐=200G再仔细思考:肉类=猪肉+牛羊+鸡鸭+水产+……,而猪肉是大部分最常食用的肉类,那大胆的给出估算:原创 2021-03-18 10:56:28 · 720 阅读 · 0 评论 -
指标01
面试准备任务:提前准备好所有行业的指标体系(电商、内容、游戏、风控…),参考人人都是产品经理或者《精益数据分析》的文章内容自行思考。问题:如果让你构建指标体系,监控知乎每天的数据,你会怎么做?第一,互联网公司的运作离不开用户和商业变现:【基础】指标定义成了流量和收入。第二,因为互联网公司行业五花八门,电商、短视频、新闻、游戏等等需要关注的东西各不相同,各具特色,所以【附加】指标则是根据产品的具体特征来回答的,就像知乎作为一个问答社区,我选择的【附加指标】就是内容和互动。综上从用户流量、收入、内容、互原创 2021-03-18 12:10:58 · 117 阅读 · 0 评论 -
业务面试01
分析GMV/日活/转化率/客单价/跳转率/CPC/毛利率……等各种指标的波动问题“如果告诉你GMV同比下降了20%,你要怎么分析?”“日活跃人数周环比下降了15%,怎么用数据分析得到原因?”“转化率同比下降15%,会从哪些角度进行考虑”1,分析电商平台GMV同比下降20%,【提出问题】——>【作出假设】——>【验证假设】——>【得到结论】第一步:验证数据的准确性。很多时候会由于底表数据质量问题导致数据失误,不需要上升到分析阶段。第二步:在排除数据自身错误的前提下,展开多维度原创 2021-03-18 11:34:21 · 296 阅读 · 0 评论 -
AB测试
1,假设检验假设检验是用统计数据来判断命题真伪的方式。我们常常会假设两个命题:H0:备受质疑的命题H1:有待验证的问题P值就是在H0假设成立的情况下,得到样本观察结果或更极端的观察结果出现的概率。简单的理解成P代表了对H0命题的支持程度。所以P值越小,H0命题正确的概率就越小,H1命题正确的概率越大。我们有常常会指定显著性水平α=0.05,当P<α时,H0命题成立的概率<0.05,这是一个受到统计学支持的假命题。2,置信区间和置信度在假设检验的过程中,我们往往采用样本数据特征来估计整原创 2021-03-18 10:21:58 · 281 阅读 · 0 评论