机器学习与深度学习
机器学习:本质是从已知数据中获得规律,并利用规律预测未知数据。
深度学习:一般是指通过训练多层网络结构对未知数据进行分类或回归
“深度学习是一种特殊的机器学习,通过学习将世界使用嵌套的概念层次来表示并实现巨大的功能和灵活性,其中每个概念都定义为与简单概念相关联,而更为抽象的表示则以较不抽象的方式来计算。”
机器学习的分类:
深度学习的分类:
有监督学习方法——深度前馈网络、卷积神经网络、循环神经网络等
无监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等
数学基础
线性代数
矩阵分解
数字图像本身就是以矩阵的形式呈现的,多个向量组成的样本也是矩阵这种形式非常常见,大多机器学习算法里每个样本都是以向量的形式存在的,多个矩阵叠加则是以张量(tensor)的形式存在 Google 深度学习库 TensorFlow 的字面意思之一。
概率论与数理统计
概率论和数理统计,应用较深值得认真研习,