目录
一、函数下
1. 高阶函数
- 接收函数作为参数,或者将函数作为返回值返回的函数就是高阶函数
# 接收一个或者多个函数对象作为参数
# 将函数作为返回值
# 将一个指定的列表中的偶数,保存到一个新的列表中返回
list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
def fun2(n):
if n % 2 == 0:
return True
def fun1(fn):
list2 = []
for i in list1:
if fn(i):
list2.append(i)
return list2
print(fun1(fun2))
# 运行结果:
[2, 4, 6, 8, 10]
1.1 filter()函数
- filter()函数 过滤 两个参数
- 1. 传递一个函数对象
- 2. 传递一个需要过滤的序列
# filter()函数 过滤 两个参数
# 1. 传递一个函数对象
# 2. 传递一个需要过滤的序列
list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
def fun2(n):
if n % 2 == 0:
return True
print(list(filter(fun2, list1))) # filter函数返回的是filter对象
# 需要进行强制转换才会得到想要的输出结果
# 运行结果:
[2, 4, 6, 8, 10]
2.匿名函数
- 匿名函数:就是没有名字的函数,不指定函数的名字
- 又称为lambda函数,语法:(lambda 参数:表达式)(传参)
res1 = lambda a, b: a + b
print(res1(1, 2))
res2 = (lambda a, b: a + b)(1,2)
print(res2)
# 运行结果:
3
3
-
lambda函数和filter()函数配合使用
list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
res = lambda i : i % 2 == 0
print(list(filter(res,list1)))
# 运行结果:
[2, 4, 6, 8, 10]
3. 闭包
- 将函数作为返回值也是高阶函数,我们也称为闭包
- 闭包的好处
- 通过闭包可以创建一些只有当前函数能访问的变量
- 可以将一些私有数据藏到闭包中
- 行成闭包的条件
- 函数嵌套
- 将内部函数作为返回值返回,返回的是函数对象
- 内部函数必须要使用到外部函数的变量
# 行成闭包的条件
# 1. 函数嵌套
# 2. 将内部函数作为返回值返回 返回的是函数对象
# 3. 内部函数必须要使用到外部函数的变量
# 闭包的作用:保存外部函数的变量不被销毁
def fun_out(num1):
# 定义一个内部函数
def fun_inner(num2):
# 内部函数用到了外部函数的变量或参数(num1)
res = num1 + num2
print(res)
print(id(num1))
return fun_inner
f = fun_out(1)
f(2)
f(3)
# 运行结果:
1456565264
3
4
def fun_out(num1):
# 定义一个内部函数
def fun_inner(num2):
# 内部函数用到了外部函数的变量或参数(num1)
num1 = 2
res = num1 + num2
print(f'res = {res}')
print(f'num1 = {num1}')
fun_inner(2)
print(f'num1 = {num1}')
return fun_inner
f = fun_out(1)
f(2)
f(3)
# 运行结果:
num1 = 1
res = 4
num1 = 1
res = 4
res = 5
# 修改外部变量
def fun_out(num1):
# 定义一个内部函数
def fun_inner(num2):
# 内部函数用到了外部函数的变量或参数(num1)
nonlocal num1 # 告诉解释器,此处用的是外部的变量num1
num1 = 2
res = num1 + num2
print(f'res = {res}')
print(f'num1 = {num1}')
fun_inner(2)
print(f'num1 = {num1}')
return fun_inner
f = fun_out(1)
f(2)
f(3)
# 运行结果:
num1 = 1
res = 4
num1 = 2
res = 4
res = 5
4. 装饰器的引入
- 我们可以直接通过修改函数中的代码来完成需求,但是会产生以下一些问题
- 如果修改的函数多,修改起来会比较麻烦
- 不方便后期的维护
- 这样做会违反开闭原则(ocp)
- 程序的设计,要求开发对程序的扩展,要关闭对程序的修改
def add(a, b):
return a + b
# fun()是做装饰的,而并不是装饰器
def fun(fn, *args, **kwargs):
print('函数开始执行')
res = fn(*args, **kwargs)
print('函数执行结束')
return res
print(fun(add, 1, 2))
# 运行结果:
函数开始执行
函数执行结束
3
# 装饰器是一个特殊的闭包
# 符合闭包的三大条件
def fun():
print(111)
# 装饰器
def fun_out(fn):
def fun_inner():
print('函数开始执行')
fn()
print('函数执行结束')
return fun_inner
f = fun_out(fun)
f()
# 运行结果:
函数开始执行
111
函数执行结束
5. 装饰器的使用
- 通过装饰器,可以在不修改原来函数的情况下来对函数进行扩展
- 在开发中,我们都是通过装饰器来扩展函数的功能的
def add(a, b):
return a + b
# 装饰器
def fun_out(fn):
def fun_inner(*args, **kwargs):
print('函数开始执行')
r= fn(*args, **kwargs)
print('函数执行结束')
return r
return fun_inner
f = fun_out(add)
res = f(1, 2)
print(res)
# 运行结果:
函数开始执行
函数执行结束
3
def fun_out(fn):
def fun_inner(*args, **kwargs):
print('函数开始执行')
r= fn(*args, **kwargs)
print('函数执行结束')
return r
return fun_inner
@fun_out # 装饰器语法糖的写法
# 语法糖: @fun_out 等价于 fun_out(fn)
def add(a, b):
return a + b
res = add(1, 2)
print(res)
@fun_out
def fun():
print(111)
fun()
# 运行结果:
函数开始执行
函数执行结束
3
函数开始执行
111
函数执行结束
二、小练习
1.请使用装饰器实现已存在的函数的执行所花费的时间。
- time模块
import time
def exetime(fn):
def fun_inner(*args, **kwargs):
local_time = time.time()
fn(*args, **kwargs)
print(f'{fn.__name__}函数执行,花费了 %.2f 秒' % (time.time()-local_time))
return fun_inner
@exetime
def isLeapYear():
year=int(input('请输入年份:'))
if year%400==0 or year%4==0 and year%100!=0:
print(f'{year}年是闰年')
else:
print(f'{year}年不是闰年')
isLeapYear()
# 运行结果:
请输入年份:2016
2016年是闰年
isLeapYear函数执行,花费了 1.82 秒