RNN

这篇博客主要探讨了自然语言处理(NLP)中Transformer模型和Attention机制的原理,包括详细的解释和源码解析,帮助读者深入理解BERT等先进NLP模型的基础。
摘要由CSDN通过智能技术生成

NLP相关:

nlp中的Attention注意力机制+Transformer详解 https://zhuanlan.zhihu.com/p/53682800

NLP中的Attention原理和源码解析 https://zhuanlan.zhihu.com/p/43493999

 

【NLP】Transformer模型原理详解 https://zhuanlan.zhihu.com/p/44121378 https://zhuanlan.zhihu.com/p/46652512

一文读懂BERT(原理篇)https://blog.csdn.net/jiaowoshouzi/article/details/89073944

 

 

  是什么

为什么需要RNN

(RNN解决了什么问题)

如何实现
RNN

RNN是神经网络中的一种,其网络结构是一个链条,链条中的每个节点存储着一个时间步的信息。

训练过程中,输入是一个序列(比如一句话),从左到右,每个时间步,RNN依次读取序列中的每个单词,通过隐藏层的激活函数将信息保存在当前节点中。然后把信息会传到下一个节点。基于这样前后单元相连接的链条结构,RNN实现了信息传递,最后一个单元保存了整个输入序列的信息,可以处理复杂的自然语言分类问题。

 

双向RNN:将两个相反方向的隐藏层连接到相同的output上,使得output可以能够同时取得过去和未来的信息

优势:能够支持模型使用序列的所有信息,支持在任意位置进行预测,

缺点:必须遍历序列所有信息后,才能够预测

RNN 相对于传统神经网络的优势:

  • 在不同的实例中,输入和输出可以是不同的长度
  • 参数共享:能够共享从文本不同位置学习到的特征(从文本某处学到的特征可以快速推广到整个文本的其他位置)(比如RNN 可以检测到"henry" 是个人名,不管这个单词是在句子中的哪一部分)

下列网络图中,只有Wax, Waa, Wya三种参数

 

a部分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值