腾讯音乐推荐系统

本文介绍了腾讯音乐在全民K歌中如何进行内容推荐,特别是利用精排和粗排模型来优化用户体验。教师模型是一个复杂的全量特征模型,而学生模型简化为仅使用user和item特征。通过模型蒸馏,学生模型能效仿教师模型的输出,实现高效在线服务,用于生成用户和物品的嵌入向量,进行快速排序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

业务背景:

全民K歌:

给用户进行内容推荐:

优质UGC(平台原创的优质素材)推荐

用户关注的内容

同城社交

货找人

阶段

目的

具体操作

召回 从海量的item中筛选小量级的用户可能感兴趣的内容

基于用户画像召回(用户感兴趣的歌曲/作者)

基于社交(用户社交圈的特点)

基于模型

粗排

把召回的十万量级的作品,缩减到万量级

因为算力的约束,精排的数量不大(千量级),如果直接从召回到精排,信息损失过多

粗排的双塔模型实现

 

将user 和 item 的 feature进行结构解耦和分开建模。

user→ user feature → user embedding

item→ item feature → item embedding

user embedding跟item embedding之间做內积的运算,得到一个粗排的预估值

优点:user/item 结构解耦,内积计算算力小

缺点:特征表达缺失&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值