匿名函数
"""
1. 匿名函数
语法:
函数名 = lambda 参数列表: 返回值
相当于:
def 函数名(参数列表):
return 返回值
注意:
1)匿名函数只能实现用一句代码就可以完成功能的函数
2)匿名函数在调用的时候和普通函数没有区别
3)匿名函数的参数不能使用冒号语法来说明类型
"""
sum1 = lambda num1, num2=10: num1 + num2
print(sum1(10, 20))
print(sum1(num1=100, num2=200))
print(sum1(5))
# 练习:定义一个匿名函数获取指定数的个位数
units_digit = lambda num: num % 10
print(units_digit(123))
### 变量作用域
"""
变量作用域 - 指的就是变量能够使用的范围
根据变量作用域的不同将变量分为:全局变量和局部变量
1. 全局变量
没有定义在函数里面或者类里面的变量就是全局变量;
全局变量的作用域是从定义开始到程序结束。
2.局部变量
定义在函数里面的变量是局部变量(形参也是局部变量);
局部变量的作用域是从定义开始到函数结束。
3.函数调用过程(内存的变化)
每次在调用函数的时候,系统会自动在栈区间为这个函数开辟一个临时内存区域,用来存储在函数中定义的局部变量。
当函数调用结束的时候系统会自动释放这块内存。
"""
"""1.全局变量"""
# a、b、c都是全局变量
a = 100
for b in range(10):
print(b)
c = 20
print(f'循环里面使用a:{a}')
print(f'循环外面使用b和c:{b}, {c}')
def func1():
print(f'函数中使用a、b、c:{a}, {b}, {c}')
func1()
"""2. 局部变量"""
def func2(x):
y = 100
for z in range(10):
pass
print('函数结束')
print(f'函数里使用x, y, z:{x}, {y}, {z}')\
func2(20)
# print(f'函数外面使用x,y,z:{z}') # 报错
"""
4. global和nonlocal - 只能在函数体中使用
global - 1)在函数中修改全局变量的值,需要在前面用global对变量进行说明;
2)在函数中定义一个全局变量,需要在前面用global对变量进行说明。
global 变量名
(了解)nonlocal - 如果需要在局部的局部修改一个局部变量的值,就需要使用nonlocal进行说明
"""
m = 100
n = 100
def func3():
# 这儿不会修改全局变量m的值,而是重新定义一个新的局部变量m
m = 200
global n
n = 200
# 在函数中可以使用全局变量
print(f'函数中m:{m}')
print(f'函数中n:{n}')
global x
x = 'abc'
func3()
print(f'函数外面 m:{m}')
print(f'函数外面 n:{n}')
print(f'函数外面 x:{x}')
ab = 100
def func4():
xy = 200
print(f'func4:{ab}, {xy}')
def func5():
nonlocal xy
xy = 300
print(f'func5:{ab}, {xy}')
func5()
print(f'func4-xy:{xy}')
func4()
函数就是变量
"""
1.重要结论
python中定义函数就是定义类型是function的变量,函数名就是变量名
"""
func1 = lambda x: x*2
print(type(func1)) # <class 'function'>
"""
相等于:
def func1(x):
return x*2
"""
def func2():
print('函数!')
a = 10
print(type(a)) # <class 'int'>
print(type(func2)) # <class 'function'>
print(id(a))
print(id(func2))
b = a
print(b + 10)
c = func2
c()
list1 = [a, 100]
list2 = [func2, 100, func2()]
print(list2)
a = 'abc'
func2 = 'abc'
"""1.变量作为函数的参数"""
def func3(x):
print(f'x:{x}')
def func4():
print('函数4')
func3(199)
num = 200
func3(num)
func3(func4)
# x可以传数字、字符串、列表、元组
def func5(x):
print(x * 2)
# x可以传字符串、列表、元组、字典
def func6(x):
print(x[0])
# x只能传列表
def func7(x):
x.append(100)
print(x)
# func8和func9是实参高阶函数 - 因为这两个函数的参数中有函数
# x只能传函数,而且这个函数在调用的时候可以不用传参
def func8(x):
print(x())
# x只能传函数;函数调用的时候可以只接受一个参数;返回值必须是数字
def func9(x):
print(x(10) / 2)
"""func10是返回值高阶函数 - 因为func10的返回值是函数"""
def func10():
def func11():
print('hello')
return 100
return func11
"""print(func11()) => print(100)"""
print(func10())
常用实参高阶函数
"""
1.常用实参高阶函数
max、min、sorted/sort
map
reduce
"""
"""1)max、min、sorted
max(序列, key=函数)
函数要求:a. 有且只有一个参数(这个参数指向是前面序列中的每个元素)
b. 有一个返回值(返回值就是比较对象)
"""
nums = [89, 78, 90, 23, 67, 81]
print(max(nums))
"""a.求nums中个位最大的元素: 89"""
nums = [89, 78, 90, 23, 67, 81]
# 方法一:
"""
def temp(item):
return item % 10
print(max(nums, key=temp))
"""
# 方法二
print(max(nums, key=lambda item: item % 10))
"""b.求nums中值最大的元素(将字符串数字当成数字):'100'"""
nums = [89, '100', 34, '78', 90]
print(max(nums, key=lambda item: int(item)))
"""c.获取年龄最大的学生信息;获取成绩最低的学生信息"""
students = [
{'name': '小明', 'age': 18, 'score': 90},
{'name': '老王', 'age': 28, 'score': 67},
{'name': '张三', 'age': 22, 'score': 83},
{'name': '李四', 'age': 25, 'score': 57}
]
print(max(students, key=lambda item: item['age']))
print(min(students, key=lambda item: item['score']))
"""d. 获取nums各个位数的和最大的元素"""
nums = [123, 97, 56, 109, 82]
"""6, 16, 11, 10, 10"""
def temp(item):
s = 0
for x in str(item):
s += int(x)
return s
print(max(nums, key=temp))
print(sorted(nums, key=temp))
# max的实现原理(了解)
def yt_max(seq, *, key=None):
""""""
"""
seq = [89, 78, 90, 23, 67, 81]
key = lambda item: item % 10
"""
if key:
seq = list(seq)
m = seq[0]
for x in seq[1:]:
if key(x) > key(m):
m = x
return m
"""
seq = [89, 78, 90, 23, 67, 81]
m = 89
x = 78, 90, 23, 67, 81
x = 78: if key(78) > key(89) -> if 8 > 9 -> if False
x = 90: if key(90) > key(89) -> if 0 > 9 -> if False
"""
else:
seq = list(seq)
m = seq[0]
for x in seq[1:]:
if x > m:
m = x
return m
nums = [89, 78, 90, 23, 67, 81]
print(yt_max(nums))
print(yt_max(nums, key=lambda item: item % 10))
print(yt_max(students, key=lambda x: x['score']))
map和reduce
"""
1.map
1)map(函数,序列) - 将序列中所有元素按照指定规则进行交换产生一个新的序列
函数要求:a.有一个参数(指向序列中元素)
b.需要一个返回值(新序列中的元素,描述清楚新序列元素和原序列元素的关系)
2)map(函数,序列1,序列2)
函数要求:a.有两个参数,第一个参数指向序列1中的元素,第二个参数指向序列2中的元素
b.需要一个返回值(新序列中的元素,描述清楚新序列元素和原序列元素的关系)
函数后面可以有N个序列,要求这N个序列中元素个数必须一致;
"""
"""
练习:
['小明', '张三', '李四', '老王']
[18, 30, 26, 35]
->
[
{'name': '小明', 'age': 18},
{'name': '张三', 'age': 30},
...
]
"""
names = ['小明', '张三', '李四', '老王']
ages = [18, 30, 26, 35]
result = map(lambda i1, i2: {'name': i1, 'age': i2}, names, ages)
"""
1. map
1) map(函数, 序列) - 将序列中所有元素按照指定规则进行变换产生一个新的序列
函数要求:a. 有一个参数(指向原序列中元素)
b. 需要一个返回值(新序列中的元素,描述清楚新序列元素和原序列元素的关系)
2) map(函数, 序列1, 序列2)
函数要求:a.有两个参数,第一个参数指向序列1中的元素,第二个参数指向序列2中元素
b.需要一个返回值(新序列中的元素,描述清楚新序列元素和原序列元素的关系)
函数后面可以有N个序列,要求这N个序列中元素个数必须一致;有多少个序列,函数就需要多少个参数
"""
"""
[23, 45, 78, 91, 56] -> ['23', '45', '78', '91', '56']
[23, 45, 78, 91, 56] -> [3, 5, 8, 1, 6]
"""
nums = [23, 45, 78, 91, 56]
print(list(map(lambda item: str(item), nums)))
print(list(map(lambda item: item % 10, nums)))
nums1 = [1, 2, 3, 4, 5]
nums2 = [6, 7, 8, 9, 1]
"""
[16, 27, 38, 49, 51]
"""
result = map(lambda i1, i2: i1 * 10 + i2, nums1, nums2)
print(list(result))
"""
练习:
['小明', '张三', '李四', '老王']
[18, 30, 26, 35]
->
[
{'name': '小明', 'age': 18},
{'name': '张三', 'age': 30},
...
]
"""
names = ['小明', '张三', '李四', '老王']
ages = [18, 30, 26, 35]
result = map(lambda i1, i2: {'name': i1, 'age': i2}, names, ages)
print(list(result))
"""
2. reduce
reduce(函数, 序列, 初始值)
函数:a.有且只有两个参数
第一个参数:第一次指向初始值,第二次开始指向上一次的运算结果(可以直接看成是初始值)
第二个参数:指向序列中的每个元素
b. 返回值:描述合并规则(用初识值和元素来描述)
"""
"""
[1, 2, 3, 4, 5] -> 15 (1+2+3+4+5) 初始值0
[1, 2, 3, 4, 5] -> 120 (1*2*3*4*5) 初始值1
[1, 2, 3, 4, 5] -> '12345' ('' + '1'+'2'+'3'+'4'+'5') 初始值 ''
"""
from functools import reduce
nums = [1, 2, 3, 4, 5]
result = reduce(lambda x, y: x + y, nums, 0)
print(result)
result = reduce(lambda x, y: x * y, nums, 1)
print(result)
result = reduce(lambda x, y: x + str(y), nums, '')
print(result)
"""
students = [
{'name': '小明', 'age': 18, 'score': 90},
{'name': '老王', 'age': 28, 'score': 67},
{'name': '张三', 'age': 22, 'score': 83},
{'name': '李四', 'age': 25, 'score': 57}
]
需求1:'小明老王张三李四'
'' + '小明' + '老王' + '张三' + ...
需求2:['小明', '老王', '张三', '李四']
[] + ['小明'] + ['老王'] + ...
"""
students = [
{'name': '小明', 'age': 18, 'score': 90},
{'name': '老王', 'age': 28, 'score': 67},
{'name': '张三', 'age': 22, 'score': 83},
{'name': '李四', 'age': 25, 'score': 57}
]
result = reduce(lambda x, y: x + y['name'], students, '')
print(result)
result = reduce(lambda x, y: x + [y['name']], students, [])
print(result)
-
已经列points中保存的是每个点的坐标(坐标是用元组表示的,第一个值是x坐标,第二个值是y坐标)
points = [ (10, 20), (0, 100), (20, 30), (-10, 20), (30, -100) ]
以下问题使用实参高阶函数来解决
1)获取列表中y坐标最大的点
print(f'列表中y坐标最大的点:, {max(points, key=lambda point: point[1])}')
2)获取列表中x坐标最小的点
print(f'列表中x坐标最小的点:, {(min(points, key=lambda point: point[0]))}')
3)获取列表中距离原点最远的点
print(f'列表中距离原点最远的点:, {(max(points, key=lambda x: x[0] ** 2 + x[1] ** 2))}')
4)将点按照点到x轴的距离大小从大到小排序
print(f'将点按照点到x轴的距离大小从大到小排序:, {sorted(points, key=lambda element:(element[1]))}')
-
求列表 nums 中绝对值最大的元素
print(f'列表 nums 中绝对值最大的元素: {max(nums, key=lambda element: abs(element))}')
-
已经两个列表A和B,用map函数创建一个字典,A中的元素是key,B中的元素是value
A = ['name', 'age', 'sex'] B = ['张三', 18, '女'] 新字典: {'name': '张三', 'age': 18, 'sex': '女'}
A = ['name', 'age', 'sex'] B = ['张三', 18, '女'] result = map(lambda key, value: (key, value), A, B) print(dict(result))
-
已经三个列表分别表示5个学生的姓名、学科和班号,使用map将这个三个列表拼成一个表示每个学生班级信息的的字典
names = ['小明', '小花', '小红', '老王'] nums = ['1906', '1807', '2001', '2004'] subjects = ['python', 'h5', 'java', 'python'] 结果:{'小明': 'python1906', '小花': 'h51807', '小红': 'java2001', '老王': 'python2004'}
names = ['小明', '小花', '小红', '老王'] nums = ['1906', '1807', '2001', '2004'] subjects = ['python', 'h5', 'java', 'python'] result = map(lambda item1, item2, item3: (item1, item3 + item2), names, nums, subjects) print(dict(result))
-
已经一个列表message, 使用reduce计算列表中所有数字的和(用采用列表推导式和不采用列表推导式两种方法做)
message = ['你好', 20, '30', 5, 6.89, 'hello'] 结果:31.89
# 采用列表推到式 from functools import reduce message = ['你好', 20, '30', 5, 6.89, 'hello'] list1 = [i for i in message if type(i) != str] print(f'列表中所有数字的和:{reduce(lambda x, y: x + y, list1, 0)}') # 不采用列表推到式 message = ['你好', 20, '30', 5, 6.89, 'hello'] print(f'列表中所有数字的和:{reduce(lambda x, y: x + (y if type(y) != str else 0), message, 0)}')
-
已知一个字典列表中保存的是每个学生各科的成绩,
1)计算并添加每个学生的平均分
2)按照平均分从高到低排序
studens = [ {'name': 'stu1', 'math': 97, 'English': 67, 'Chinese': 80}, {'name': 'stu2', 'math': 56, 'English': 84, 'Chinese': 74}, {'name': 'stu3', 'math': 92, 'English': 83, 'Chinese': 78}, {'name': 'stu4', 'math': 62, 'English': 90, 'Chinese': 88} ] # 计算平均分 studens = [ {'name': 'stu1', 'math': 97, 'English': 67, 'Chinese': 80, 'avg':81}, {'name': 'stu2', 'math': 56, 'English': 84, 'Chinese': 74, 'avg':71}, {'name': 'stu3', 'math': 92, 'English': 83, 'Chinese': 78, 'avg':87}, {'name': 'stu4', 'math': 62, 'English': 90, 'Chinese': 88, 'avg':80} ] # 按照平均分从高到低排序 ...
print(list(map(lambda stu: {'name': stu['name'], 'math': stu['math'], 'English': stu['English'], 'Chinese': stu['Chinese'], 'avg': int((stu['math'] + stu['English'] + stu['Chinese']) / 3)}, studens))
# 按照平均分从高到低排序
print(sorted(studens, key=lambda stu: stu['avg'], reverse=True))