day12-实参高阶函数作业

本文详细介绍了Python中的匿名函数lambda,包括其语法、使用场景及与普通函数的对比。此外,还深入探讨了变量作用域,区分了全局变量和局部变量,并展示了如何在函数内部修改全局变量。最后,通过实例讲解了`global`和`nonlocal`关键字的用法。
摘要由CSDN通过智能技术生成

匿名函数

"""
1. 匿名函数
语法:
函数名 = lambda 参数列表: 返回值

相当于:
def 函数名(参数列表):
    return 返回值

注意:
    1)匿名函数只能实现用一句代码就可以完成功能的函数
    2)匿名函数在调用的时候和普通函数没有区别
    3)匿名函数的参数不能使用冒号语法来说明类型
"""
sum1 = lambda num1, num2=10: num1 + num2

print(sum1(10, 20))
print(sum1(num1=100, num2=200))
print(sum1(5))

# 练习:定义一个匿名函数获取指定数的个位数
units_digit = lambda num: num % 10
print(units_digit(123))

### 变量作用域

"""
变量作用域  - 指的就是变量能够使用的范围
根据变量作用域的不同将变量分为:全局变量和局部变量

1. 全局变量
没有定义在函数里面或者类里面的变量就是全局变量;
全局变量的作用域是从定义开始到程序结束。

2.局部变量
定义在函数里面的变量是局部变量(形参也是局部变量);
局部变量的作用域是从定义开始到函数结束。

3.函数调用过程(内存的变化)
每次在调用函数的时候,系统会自动在栈区间为这个函数开辟一个临时内存区域,用来存储在函数中定义的局部变量。
当函数调用结束的时候系统会自动释放这块内存。
"""
"""1.全局变量"""
# a、b、c都是全局变量
a = 100

for b in range(10):
    print(b)
    c = 20
    print(f'循环里面使用a:{a}')

print(f'循环外面使用b和c:{b}, {c}')


def func1():
    print(f'函数中使用a、b、c:{a}, {b}, {c}')


func1()


"""2. 局部变量"""
def func2(x):
    y = 100
    for z in range(10):
        pass
    print('函数结束')
    print(f'函数里使用x, y, z:{x}, {y}, {z}')\



func2(20)
# print(f'函数外面使用x,y,z:{z}')   # 报错


"""
4. global和nonlocal   - 只能在函数体中使用
global - 1)在函数中修改全局变量的值,需要在前面用global对变量进行说明;
         2)在函数中定义一个全局变量,需要在前面用global对变量进行说明。
global 变量名


(了解)nonlocal  -  如果需要在局部的局部修改一个局部变量的值,就需要使用nonlocal进行说明
"""
m = 100
n = 100


def func3():
    # 这儿不会修改全局变量m的值,而是重新定义一个新的局部变量m
    m = 200

    global n
    n = 200

    # 在函数中可以使用全局变量
    print(f'函数中m:{m}')
    print(f'函数中n:{n}')

    global x
    x = 'abc'


func3()
print(f'函数外面 m:{m}')
print(f'函数外面 n:{n}')
print(f'函数外面 x:{x}')


ab = 100


def func4():
    xy = 200
    print(f'func4:{ab}, {xy}')

    def func5():
        nonlocal xy
        xy = 300
        print(f'func5:{ab}, {xy}')

    func5()
    print(f'func4-xy:{xy}')


func4()

函数就是变量

"""
1.重要结论
python中定义函数就是定义类型是function的变量,函数名就是变量名
"""

func1 = lambda x: x*2
print(type(func1))    # <class 'function'>
"""
相等于:
def func1(x):
    return x*2
"""


def func2():
    print('函数!')


a = 10

print(type(a))      # <class 'int'>
print(type(func2))  # <class 'function'>

print(id(a))
print(id(func2))

b = a
print(b + 10)

c = func2
c()

list1 = [a, 100]
list2 = [func2, 100, func2()]
print(list2)

a = 'abc'
func2 = 'abc'

"""1.变量作为函数的参数"""


def func3(x):
    print(f'x:{x}')


def func4():
    print('函数4')


func3(199)

num = 200
func3(num)

func3(func4)


# x可以传数字、字符串、列表、元组
def func5(x):
    print(x * 2)


# x可以传字符串、列表、元组、字典
def func6(x):
    print(x[0])


# x只能传列表
def func7(x):
    x.append(100)
    print(x)


#  func8和func9是实参高阶函数  - 因为这两个函数的参数中有函数
# x只能传函数,而且这个函数在调用的时候可以不用传参
def func8(x):
    print(x())


# x只能传函数;函数调用的时候可以只接受一个参数;返回值必须是数字
def func9(x):
    print(x(10) / 2)


"""func10是返回值高阶函数 - 因为func10的返回值是函数"""
def func10():
    def func11():
        print('hello')
        return 100
    return func11


"""print(func11())  => print(100)"""
print(func10())

常用实参高阶函数

"""
1.常用实参高阶函数
max、min、sorted/sort
map
reduce
"""

"""1)max、min、sorted
max(序列, key=函数)
函数要求:a. 有且只有一个参数(这个参数指向是前面序列中的每个元素)
        b. 有一个返回值(返回值就是比较对象)
"""
nums = [89, 78, 90, 23, 67, 81]
print(max(nums))

"""a.求nums中个位最大的元素: 89"""
nums = [89, 78, 90, 23, 67, 81]

# 方法一:
"""
def temp(item):
    return item % 10
print(max(nums, key=temp))
"""

# 方法二
print(max(nums, key=lambda item: item % 10))


"""b.求nums中值最大的元素(将字符串数字当成数字):'100'"""
nums = [89, '100', 34, '78', 90]
print(max(nums, key=lambda item: int(item)))


"""c.获取年龄最大的学生信息;获取成绩最低的学生信息"""
students = [
    {'name': '小明', 'age': 18, 'score': 90},
    {'name': '老王', 'age': 28, 'score': 67},
    {'name': '张三', 'age': 22, 'score': 83},
    {'name': '李四', 'age': 25, 'score': 57}
]

print(max(students, key=lambda item: item['age']))
print(min(students, key=lambda item: item['score']))

"""d. 获取nums各个位数的和最大的元素"""
nums = [123, 97, 56, 109, 82]
"""6, 16, 11, 10, 10"""
def temp(item):
    s = 0
    for x in str(item):
        s += int(x)
    return s


print(max(nums, key=temp))
print(sorted(nums, key=temp))


# max的实现原理(了解)
def yt_max(seq, *, key=None):
    """"""
    """
    seq = [89, 78, 90, 23, 67, 81]
    key = lambda item: item % 10
    """
    if key:
        seq = list(seq)
        m = seq[0]
        for x in seq[1:]:
            if key(x) > key(m):
                m = x
        return m
        """
        seq = [89, 78, 90, 23, 67, 81]
        m = 89
        x = 78, 90, 23, 67, 81
        x = 78: if key(78) > key(89)  -> if 8 > 9 -> if False
        x = 90: if key(90) > key(89)  -> if 0 > 9  -> if False

        """
    else:
        seq = list(seq)
        m = seq[0]
        for x in seq[1:]:
            if x > m:
                m = x
        return m


nums = [89, 78, 90, 23, 67, 81]
print(yt_max(nums))
print(yt_max(nums, key=lambda item: item % 10))


print(yt_max(students, key=lambda x: x['score']))

map和reduce

"""
1.map
1)map(函数,序列) - 将序列中所有元素按照指定规则进行交换产生一个新的序列
函数要求:a.有一个参数(指向序列中元素)
        b.需要一个返回值(新序列中的元素,描述清楚新序列元素和原序列元素的关系)

2)map(函数,序列1,序列2)
函数要求:a.有两个参数,第一个参数指向序列1中的元素,第二个参数指向序列2中的元素
        b.需要一个返回值(新序列中的元素,描述清楚新序列元素和原序列元素的关系)

函数后面可以有N个序列,要求这N个序列中元素个数必须一致;
"""


"""
练习:
['小明', '张三', '李四', '老王']
[18, 30, 26, 35]

->
[
    {'name': '小明', 'age': 18},
    {'name': '张三', 'age': 30},
    ...
]
"""
names = ['小明', '张三', '李四', '老王']
ages = [18, 30, 26, 35]
result = map(lambda i1, i2: {'name': i1, 'age': i2}, names, ages)
"""
1. map
1) map(函数, 序列)   -  将序列中所有元素按照指定规则进行变换产生一个新的序列
函数要求:a. 有一个参数(指向原序列中元素)
        b. 需要一个返回值(新序列中的元素,描述清楚新序列元素和原序列元素的关系)

2) map(函数, 序列1, 序列2)
函数要求:a.有两个参数,第一个参数指向序列1中的元素,第二个参数指向序列2中元素
        b.需要一个返回值(新序列中的元素,描述清楚新序列元素和原序列元素的关系)

函数后面可以有N个序列,要求这N个序列中元素个数必须一致;有多少个序列,函数就需要多少个参数
"""
"""
[23, 45, 78, 91, 56]  -> ['23', '45', '78', '91', '56']
[23, 45, 78, 91, 56]  -> [3, 5, 8, 1, 6]
"""
nums = [23, 45, 78, 91, 56]
print(list(map(lambda item: str(item), nums)))
print(list(map(lambda item: item % 10, nums)))

nums1 = [1, 2, 3, 4, 5]
nums2 = [6, 7, 8, 9, 1]
"""
[16, 27, 38, 49, 51]
"""
result = map(lambda i1, i2: i1 * 10 + i2, nums1, nums2)
print(list(result))

"""
练习:
['小明', '张三', '李四', '老王']
[18, 30, 26, 35]

->
[
    {'name': '小明', 'age': 18},
    {'name': '张三', 'age': 30},
    ...
]
"""
names = ['小明', '张三', '李四', '老王']
ages = [18, 30, 26, 35]
result = map(lambda i1, i2: {'name': i1, 'age': i2}, names, ages)
print(list(result))

"""
2. reduce
reduce(函数, 序列, 初始值)
函数:a.有且只有两个参数
        第一个参数:第一次指向初始值,第二次开始指向上一次的运算结果(可以直接看成是初始值)
        第二个参数:指向序列中的每个元素
     b. 返回值:描述合并规则(用初识值和元素来描述)
"""

"""
[1, 2, 3, 4, 5]  -> 15 (1+2+3+4+5)   初始值0
[1, 2, 3, 4, 5]  -> 120 (1*2*3*4*5)  初始值1
[1, 2, 3, 4, 5]  -> '12345'   ('' + '1'+'2'+'3'+'4'+'5')     初始值 ''

"""
from functools import reduce

nums = [1, 2, 3, 4, 5]
result = reduce(lambda x, y: x + y, nums, 0)
print(result)

result = reduce(lambda x, y: x * y, nums, 1)
print(result)

result = reduce(lambda x, y: x + str(y), nums, '')
print(result)

"""
students = [
    {'name': '小明', 'age': 18, 'score': 90},
    {'name': '老王', 'age': 28, 'score': 67},
    {'name': '张三', 'age': 22, 'score': 83},
    {'name': '李四', 'age': 25, 'score': 57}
]

需求1:'小明老王张三李四'
'' + '小明' + '老王' + '张三' + ...

需求2:['小明', '老王', '张三', '李四']
[] + ['小明'] + ['老王'] + ...
"""
students = [
    {'name': '小明', 'age': 18, 'score': 90},
    {'name': '老王', 'age': 28, 'score': 67},
    {'name': '张三', 'age': 22, 'score': 83},
    {'name': '李四', 'age': 25, 'score': 57}
]

result = reduce(lambda x, y: x + y['name'], students, '')
print(result)

result = reduce(lambda x, y: x + [y['name']], students, [])
print(result)
  1. 已经列points中保存的是每个点的坐标(坐标是用元组表示的,第一个值是x坐标,第二个值是y坐标)

    points = [
      (10, 20), (0, 100), (20, 30), (-10, 20), (30, -100)
    ]
    

    以下问题使用实参高阶函数来解决

    1)获取列表中y坐标最大的点

    print(f'列表中y坐标最大的点:, {max(points, key=lambda point: point[1])}')
    

    2)获取列表中x坐标最小的点

    print(f'列表中x坐标最小的点:, {(min(points, key=lambda point: point[0]))}')
    

    3)获取列表中距离原点最远的点

    print(f'列表中距离原点最远的点:, {(max(points, key=lambda x: x[0] ** 2 + x[1] ** 2))}')
    

    4)将点按照点到x轴的距离大小从大到小排序

    print(f'将点按照点到x轴的距离大小从大到小排序:, {sorted(points, key=lambda element:(element[1]))}')
    
  2. 求列表 nums 中绝对值最大的元素

    print(f'列表 nums 中绝对值最大的元素: {max(nums, key=lambda element: abs(element))}')
    
  3. 已经两个列表A和B,用map函数创建一个字典,A中的元素是key,B中的元素是value

    A = ['name', 'age', 'sex']
    B = ['张三', 18, '女']
    新字典: {'name': '张三', 'age': 18, 'sex': '女'}
    
    A = ['name', 'age', 'sex']
    B = ['张三', 18, '女']
    result = map(lambda key, value: (key, value), A, B)
    print(dict(result))
    
  4. 已经三个列表分别表示5个学生的姓名、学科和班号,使用map将这个三个列表拼成一个表示每个学生班级信息的的字典

    names = ['小明', '小花', '小红', '老王']
    nums = ['1906', '1807', '2001', '2004']
    subjects = ['python', 'h5', 'java', 'python']
    结果:{'小明': 'python1906', '小花': 'h51807', '小红': 'java2001', '老王': 'python2004'}
    
    names = ['小明', '小花', '小红', '老王']
    nums = ['1906', '1807', '2001', '2004']
    subjects = ['python', 'h5', 'java', 'python']
    result = map(lambda item1, item2, item3: (item1, item3 + item2), names, nums, subjects)
    print(dict(result))
    
  5. 已经一个列表message, 使用reduce计算列表中所有数字的和(用采用列表推导式和不采用列表推导式两种方法做)

    message = ['你好', 20, '30', 5, 6.89, 'hello']
    结果:31.89
    
    # 采用列表推到式
    from functools import reduce
    message = ['你好', 20, '30', 5, 6.89, 'hello']
    list1 = [i for i in message if type(i) != str]
    print(f'列表中所有数字的和:{reduce(lambda x, y: x + y, list1, 0)}')
    
    # 不采用列表推到式
    message = ['你好', 20, '30', 5, 6.89, 'hello']
    print(f'列表中所有数字的和:{reduce(lambda x, y: x + (y if type(y) != str else 0), message, 0)}')
    
  6. 已知一个字典列表中保存的是每个学生各科的成绩,

    1)计算并添加每个学生的平均分

    2)按照平均分从高到低排序

    studens = [
      {'name': 'stu1', 'math': 97, 'English': 67, 'Chinese': 80},
      {'name': 'stu2', 'math': 56, 'English': 84, 'Chinese': 74},
      {'name': 'stu3', 'math': 92, 'English': 83, 'Chinese': 78},
      {'name': 'stu4', 'math': 62, 'English': 90, 'Chinese': 88}
    ]
    
    # 计算平均分
    studens = [
      {'name': 'stu1', 'math': 97, 'English': 67, 'Chinese': 80, 'avg':81},
      {'name': 'stu2', 'math': 56, 'English': 84, 'Chinese': 74, 'avg':71},
      {'name': 'stu3', 'math': 92, 'English': 83, 'Chinese': 78, 'avg':87},
      {'name': 'stu4', 'math': 62, 'English': 90, 'Chinese': 88, 'avg':80}
    ]
    
    # 按照平均分从高到低排序
    ...
    
    print(list(map(lambda stu: {'name': stu['name'], 'math': stu['math'],
                                'English': stu['English'], 'Chinese':
                                 stu['Chinese'],
                                'avg': int((stu['math'] + stu['English'] + stu['Chinese']) / 3)}, studens))
    
# 按照平均分从高到低排序
print(sorted(studens, key=lambda stu: stu['avg'], reverse=True))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值