LeetCode刷题之HOT100之最长回文串

2024/5/28 大家上午好啊,我又来做题了

1、题目描述

在这里插入图片描述

2、逻辑分析

题目要求找出最长的回文子串。我回去看了一下回文数字和回文链表这两道题。这个题目的思想其实跟以上两题也差不多,但是结合了最长子串这一概念。那么怎么解决这个题目呢?那么我给出的建议就是先看题解。官方给出了三种解题方法:动态规划、中心扩展算法和Manacher算法。那么先从第一种方法动态规划开始吧。

动态规划:对于一个子串而言,如果它是回文串,并且长度大于 222,那么将它首尾的两个字母去除之后,它仍然是个回文串。例如对于字符串 “ababa”,如果我们已经知道 “bab” 是回文串,那么 “ababa”一定是回文串,这是因为它的首尾两个字母都是 “a”。那么借助这个算法思想,即可做出解答。

3、代码演示

public String longestPalindrome(String s) {  
    // 获取字符串s的长度  
    int n = s.length();  
    // 创建一个二维布尔数组dp,用于记录从i到j的子串是否为回文串  
    boolean[][] dp = new boolean[n][n];  
  
    // 初始化dp数组  
    // 单个字符一定是回文串  
    for(int i = 0 ; i < n ; i++){  
        dp[i][i] = true;  
        // 如果相邻的两个字符相等,那么它们组成的子串也是回文串  
        if(i + 1 < n) dp[i][i + 1] = (s.charAt(i) == s.charAt(i + 1)); // 这里修正为i+1,而不是i+1][i  
    }   
    // 初始化最长回文子串的起始和结束索引  
    int begin = 0, end = 0;  
    // 从长度为2的子串开始检查,直到整个字符串  
    for(int l = 2; l <= n; l++){  
        // 遍历所有可能的子串起始位置  
        for(int i = 0; i < n; i++){  
            // 计算当前子串的结束位置  
            int j = i + l - 1;  
            // 如果结束位置超出了字符串的范围,则跳出当前循环  
            if(j >= n){  
                break;  
            }  
            // 更新dp[i][j]的值,基于两个条件:1. s[i] == s[j];2. 子串s[i+1...j-1]也是回文串  
            dp[i][j] = dp[i + 1][j - 1] && s.charAt(i) == s.charAt(j);  
            // 如果当前子串是回文串,并且它的长度比之前记录的最长回文子串更长,则更新最长回文子串的起始和结束索引  
            if(dp[i][j] && l > end - begin + 1){  
                begin = i;  
                end = j;  
            }  
        }  
    }    
    // 根据记录的起始和结束索引,返回最长回文子串  
    return s.substring(begin, end + 1);  
}

时间复杂度:O(nn),空间复杂度:O(nn)。

后面的两种方法就不看了,BYE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值