问题 G: 2017夏令营第一阶段(Day3)问题G :维修栅栏(fence)

这是一道关于计算维修连续损坏木板最小费用的问题,题意解析指出这是一个01背包问题。通过定义状态转移方程,可以解决这个问题。文章提供了问题分析和解题思路。
摘要由CSDN通过智能技术生成

题目描述
农场的栅栏年久失修,出现了多处破损,晶晶准备维修它,栅栏是由n块木板组成的,每块木板可能已经损坏也可能没有损坏。晶晶知道,维修连续m个木板(这m个木板不一定都是损坏的)的费用是sqrt(m)。可是,怎样设计方案才能使总费用最低呢?请你也来帮帮忙。
输入
第一行包含一个整数n(n≤2500),表示栅栏的长度;
第二行包含n个由空格分开的整数。如果第i个数字是0,则表示第i块木板已经损坏,否则表示没有损坏。
输出
仅包含一个实数,表示最小维修费用;注意:答案是小数,最少精确到0.001

样例输入

9
01 0 1 2 3 02 0

样例输出

3.000

还是老规矩,咋们来分析题目。
第一眼看到这个样例,是否感到生无可恋?
但是回头一看,审题!!
所以呢,这不就是个01背包?是不是很简单
连续修m块木板,费用为 m \sqrt m m
我相信肯定就有人问了:那直接找0把他修好不就OK了?
说这话的人需要去普及一下数学公式!!!!!
a \sqrt a a

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值