R的小技巧

R的小技巧:

R中的各种未被整理的小程序



画图:

plot不出现图形

dev.new()

读取图片

library(jpeg) # 加载包
img<-readJPEG("getdata-jeff.jpg",native=TRUE)
# 画图
plot(x, y, main="", xlab=" ", ylab="")
png(file = "nls.png")#输出图片

分屏画图

split.screen(c(1,2)) #分屏幕为左右两边
screen(1) #屏幕1预备输出
plot(X2,Y,type="p",xlab="X2",ylab="Y",main="Plotting of X2 and Y")
screen(2) #屏幕2预备输出
plot(X2,Y,type="l")

解方程:

x必须为变量,其他为形参

f<-function(x,a,b,c){return(a*x^2+b*x+c)}
root<-uniroot(f,c(0,5),a=4,b=3,c=-2,tol=0.01)
root$root

因子:

x <- c(rep(c(1,2,3),3))#元素123重复3次向量
factor(x) #将向量转化为因子

随机数:

rnorm(n, mean=1, sd=4) #正态分布
runif(n, min = 0, max = 1) #均匀分布

在这里插入图片描述

该条转载自http://blog.csdn.net/zhyoulun/article/details/46413727

日期与时间:

x <-date()
x2<-Sys.Date();x<-Sys.time()
x3<-as.Date('2015-01-01');x4<-as.Date('2016-01-05')
x4-x3
as.numeric(x4-x3)

weekdays();months();quarters();julian()

聚类:

K-Means聚类

# k-means
library(factoextra)

#设置随机数种子,保证实验的可重复进行
set.seed(123)
#利用k-mean是进行聚类
tree <- as.data.frame(distance)
km_result <- kmeans(tree, 2, nstart = 15)
#查看聚类的一些结果
print(km_result)
#提取类标签并且与原始数据进行合并
dd <- cbind(tree, cluster = km_result$cluster)
table(dd$cluster)
#进行可视化展示
fviz_cluster(km_result, data = tree,
             palette = c("#2E9FDF", "#00AFBB", "#E7B800", "#FC4E07"),
             ellipse.type = "euclid",
             star.plot = TRUE, 
             repel = TRUE,
             ggtheme = theme_minimal()
)

层次聚类

# 层次聚类
library(factoextra)

set.seed(123)
#先求样本之间两两相似性
result <- dist(tree, method = "manhattan") 
#"euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". 
#产生层次结构
result_hc <- hclust(d = result, method = "ward.D2")
#进行初步展示
fviz_dend(result_hc, cex = 0.5)

fviz_dend(result_hc, k = 3, 
          cex = 0.5, 
          k_colors = c("#2E9FDF", "#00AFBB", "#E7B800", "#FC4E07"),
          color_labels_by_k = TRUE, 
          rect = TRUE          
)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值