NLP 命名实体识别

什么是命名实体识别?

**命名实体识别(Named Entity Recognition,简称NER),又称作“专名识别”,**是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等。

命名实体识别是信息提取、问答系统、句法分析、机器翻译、面向Semantic Web的元数据标注等应用领域的重要基础工具,在自然语言处理技术走向实用化的过程中占有重要地位。

一般来说,命名实体识别的任务就是识别出待处理文本中三大类(实体类、时间类和数字类)、七小类(人名、机构名、地名、时间、日期、货币和百分比)命名实体。

如何进行识别?

包括两个大步骤:

  1. 实体边界识别
  2. 确定实体类别
    • 英文实体:相对简单,以大写字母为开头,或者单词之间有顿号,空格,逗号,点等隔开。
    • 中文实体:中文没有空格,就需要分词。一句话里切分。

基于规则和词典的方法

例如:
一句话:“今天早上天气很好”
将这8个字放到词典里去查找,发现这不是一个词,去掉最后一个字
变成:“今天早上天气很”
继续将这个7个字去词典里找,不是一个词,继续去掉最后一个字
变成:“今天早上天气”
继续找……直到“今天”是一个词,分出来!再从“今天”之后的位置,查找词
“早上天气很好”
去字典里查找……
继续重复上述步骤,知道全部结束!

这样的方法需要大量的词典,大量的规则!非常的复杂,不可用!

基于统计方法(目前方法)

四个模型:

  1. 隐马尔可夫模型(HiddenMarkovMode,HMM)
  2. 较大熵(MaxmiumEntropy,ME)
  3. 支持向量机(Support VectorMachine,SVM)
  4. 条件随机场( ConditionalRandom Fields,CRF)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小叶柏杉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值