【Vive Pro】眼动安装SR_Runtime

必须先安装viveport,再安装VIVE_SRanipalInstaller.msi
尝试不同版本
直到桌面右下角托盘出现机器人,眼部呈黄色,表示安装成功
右键about 出现版本信息,时有时无(这个还没弄清楚)

<think>好的,我现在需要帮助用户了解如何在Unity中使用HTC Vive Pro Eye收集和分析数据,并生成热力图。首先,我需要仔细分析用户的问题,并回顾提供的引用资料,确保回答准确。 首先,用户提到了HTC Vive Pro Eye和Unity的结合,需要教程式的指导。根据引用[2],有一个基于ViveSDK的开发流程,涉及SteamVR、OpenXR和SRanipalRuntime SDK。我应该按照步骤来组织回答,确保每个环节清晰。 第一步,环境准备。需要确认用户安装正确的Unity版本,根据引用[3]的链接,可能需要查看Vive开发者网站的具体要求。然后,安装SDK和插件,这里要提到SRanipal SDK和SteamVR插件,引用[2]中提到的三个第三方包可能需要详细说明安装顺序和注意事项。 第二步,场景搭建。需要指导用户设置Vive设备,包括CameraRig和启用追踪模块。这部分可能需要引用[3]中的设置步骤,确保XR插件正确配置,比如使用OpenXR或SteamVR插件。 第三步,数据收集。这里需要编写脚本获取数据,引用[2]提到可以获取3D坐标、2D坐标、注视物体等信息。需要给出代码示例,例如使用SRanipal_Eye_API获取注视信息,并处理数据存储。同时,要提醒用户注意数据更新的频率和坐标系转换的问题。 第四步,数据分析与热力图生成。热力图的生成可能需要将2D坐标数据统计后使用纹理或Shader可视化。可能需要参考引用[2]中的方法,或者建议使用Unity的粒子系统或第三方插件如Heatmap System。这里需要提供代码片段,展示如何将数据转换为热力图,并调整参数如半径和颜色渐变。 然后,测试与优化部分需要提醒用户验证数据准确性,检查设备佩戴是否正确,以及性能优化,比如控制数据存储频率避免卡顿。 最后,相关问题的生成要围绕用户可能的后续疑问,比如优化数据准确性、处理多用户数据、与其他分析工具集成,以及实时可视化方法。 需要确保所有LaTeX格式正确,比如行内公式用$...$,独立公式用$$...$$,但当前内容可能涉及代码和步骤,LaTeX使用较少。不过如果有数学表达式,例如在热力图中使用高斯分布公式,需要正确应用格式。 检查引用标记是否正确添加,例如在提及SDK安装时引用[2]和[3],在数据收集部分引用[2]。同时,确保回答结构清晰,分步骤说明,代码示例正确,并且语言简洁易懂。 最后,验证所有步骤是否基于提供的引用资料,避免引入外部知识,确保回答的准确性和可靠性。如果有不确定的部分,比如热力图的具体实现方式,可能需要更详细地参考引用[2]中的方法或建议查阅官方文档。</think>以下是在Unity中使用HTC Vive Pro Eye进行数据收集、分析和生成热力图的完整教程,基于官方文档和研究实践整理: ### 一、环境准备 1. **硬件配置** - HTC Vive Pro Eye头显(需开启追踪功能) - 安装SteamVR 1.2.3+和SRanipal Runtime 1.3.1.0+[^3] 2. **Unity设置** - 创建3D项目(推荐Unity 2019.4 LTS) - 导入以下SDK: * Vive SRanipal SDK(数据接口) * SteamVR插件(设备连接) * OpenXR/SteamVR XR Plugin(XR系统支持)[^2] ```csharp // 包管理器引用示例 dependencies { "com.valve.openvr": "1.2.3", "com.htc.upm.sranipal": "1.3.1" } ``` ### 二、数据收集 1. **场景搭建** - 添加`[CameraRig]`预制体 - 创建数据管理器脚本 2. **核心代码实现** ```csharp using Vive.SR.anipal.Eye; public class EyeDataCollector : MonoBehaviour { void Update() { if (SRanipal_Eye_Framework.Status != SRanipal_Eye_Framework.FrameworkStatus.WORKING) return; EyeData eyeData = new EyeData(); SRanipal_Eye.GetEyeData(ref eyeData); // 获取3D注视点 Vector3 gazeOrigin = eyeData.verbose_data.left.gaze_origin_mm; Vector3 gazeDirection = eyeData.verbose_data.left.gaze_direction_normalized; // 存储数据到CSV SaveToCSV(Time.time, gazeOrigin, gazeDirection); } } ``` ### 三、热力图生成(基于2D屏幕坐标) 1. **坐标转换** ```csharp // 将3D注视点转换为2D屏幕坐标 Vector3 viewportPoint = Camera.main.WorldToViewportPoint(gazeHitPoint); Vector2 screenPos = new Vector2(viewportPoint.x * Screen.width, (1 - viewportPoint.y) * Screen.height); ``` 2. **热力图算法实现** $$ G(x,y) = \frac{1}{2\pi\sigma^2}e^{-\frac{(x-x_0)^2+(y-y_0)^2}{2\sigma^2}} $$ 使用高斯核密度估计法进行数据插值 3. **Shader可视化** ```shader // 热力图片段着色器 fixed4 frag (v2f i) : SV_Target { float intensity = 0; for(int j=0; j<_HeatPointsCount; j++){ float dist = distance(i.uv, _HeatPoints[j].xy); intensity += exp(-dist * dist / (2 * _Sigma * _Sigma)); } return lerp(_ColdColor, _HotColor, intensity); } ``` ### 四、数据分析流程 1. **数据预处理** - 过滤眨数据(通过`eyeData.verbose_data.left.eye_openness`) - 时间戳对齐(使用SteamVR系统时间) 2. **统计维度 - 注视持续时间 - 扫视路径分析 - 兴趣区域(AOI)统计 ### 五、优化建议 1. **精度提升** - 校准前确保用户正确佩戴设备 - 使用SRanipal提供的`EyeDataValidator`进行数据有效性检测[^1] 2. **性能优化** - 设置合理的数据采样率(推荐120Hz) - 使用异步写入方式保存数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值