三种参数模型:
基本概念:
为随机信号建立参数模型是研究随机信号的一种基本方法,其含义是认为随机信号x(n)
是由白噪声信号w(n) 激励某一确定系统的响应。只要白噪声信号的参数确定了,研究随
机信号就可以转化成研究产生随机信号的系统。
对于平稳随机信号来说,三种常用的线性模型分别是 AR 模型(自回归模型 Auto-regression
model),MA 模型(滑动平均模型 Moving average model)和 ARMA 模型(自回归滑移平均
模型 Auto-regression-Moving average model)。
MA模型:
随机信号由当前的激励信号w(n) 和若干次过去的激励w(n-k)线性组合产生:
q 表示系统阶数,系统函数只有零点,没有极点,所以该系统一定是稳定的系统,也称为全
零点模型,用 MA(q)来表示。
AR模型:
随机信号由本身的若干次过去值 x(n-k)和当前的激励值w(n) 线性组合产生:
p 是系统阶数,系统函数中只有极点,无零点,也称为全极点模型,系统由于极点的原因,
要考虑到系统的稳定性,因而要注意极点的分布位置,用 AR(p)来表示。
ARMA 模型:
ARMA 是 AR 与 MA 模型的结合:
既有零点又有极点,所以也称极零点模型,要考虑极零点的分布位置,保证系统的稳定,
用 ARMA(p,q)来表示。
AR模型参数的估计:
而语音信号的生成我们一般选择用AR模型
1,AR模型参数和自相关函数的关系:
对上式两边同乘x(n-m),然后求均值:
根据自相关函数
可以得到
现在来求x(n)与w(n)之间的互相关函数,根据系统的冲击响应h(n)是因果的,所以输出的平稳随机信号x(n)与输入的白噪声之间的互相关函数经过推导可得
代入上式可得
由AR模型系统函数转换到时域可得
且可以看出h(0)=1.显然,AR模型系统输出信号x(n)的的自相关函数可以递推。
这就是Y-W方程。根据x(n)的自相关函数方程可以得到输入的白噪声方差为:
将其整理可得矩阵形式的方程:
由于自相关函数是偶对称函数Rxx(m)=Rxx(-m),所以R(1)=R(-1),R(p)=R(-p)...,且为(p+1)*(p+1)的矩阵。只要求出x(n)自相关函数,就能求出AR模型中的参数{ak},知道了这个就能对x(n)完成建模。
证明例题:
a、站在巨人的肩膀上验证结果:
R(4),R(5)可以继续通过Rxx公式迭代推出
b、通过已知的R()值,反推出a1,a2,a3.
c、
把头 4 个相关序列值代入矩阵求得估计值:a1=-0.6984 ;a2=-0.2748;a3=0.0915;
误差:e1=0.1151;e2=0.1002;e3=0.0498