Chapter2:极限与连续性
此篇为两本书的相同内容,并没有进行整合,可能有重合部分
2.极限与连续性
2.1 变化率和曲线的割线和切线
2.1.1 平均变化率和割线
2.1.2 瞬时变化率和切线
lim h → 0 Δ y Δ x = lim h → 0 f ( x 2 ) − f ( x 1 ) h = lim h → 0 f ( x 1 + h ) − f ( x 1 ) h (其中, h = x 2 − x 1 ) \lim_{h\rightarrow 0}\frac{\Delta y}{\Delta x}=\lim_{h\rightarrow 0}\frac{f(x_2)-f(x_1)}{h}=\lim_{h\rightarrow 0}\frac{f(x_1+h)-f(x_1)}{h}(其中,h=x_2-x_1) h→0limΔxΔy=h→0limhf(x2)−f(x1)=h→0limhf(x1+h)−f(x1)(其中,h=x2−x1)
2.2 函数的极限和极限法则
先看一个例子,观察当 x x x 接近于 1时,函数值的表现
即当
x
x
x 足够接近于 1 时,函数值接近于 2
2.2.1 极限
当 x 不断接近于 c 时(不包含 c 本身),函数值不断接近于 L,这时我们说:x 接近于 c 时,有极限 L
例子:
例子:
2.2.2 极限法则
2.2.3 估算多项式和有理函数的极限
例子:
2.2.4 三明治定理(夹逼准则)
2.3 极限的精确定义
先给一个例子:
2.3.1 极限的定义
通过控制 δ \delta δ 使函数值 f ( x ) f(x) f(x) 落在区间 ( L − ϵ , L + ϵ ) (L-\epsilon,L+\epsilon) (L−ϵ,L+ϵ) 中,通过调整 δ \delta δ 不断缩小区间,从而找到极限值 L L L
例子:
如何根据所给函数 f ,极限值 L,某值 c,来找到 δ \delta δ
例子:
2.4 单侧极限
2.4.1 单侧极限的精确定义
2.4.1.1 右极限
2.4.1.2 左极限
2.4.2 包含 s i n θ θ \frac{sin\theta}{\theta} θsinθ 的极限
2.5 连续性
2.5.1 在某点处连续
例子:
2.5.2 连续函数
在函数定义域内每个点都连续的函数,如果在定义域内某个点或多个点不连续,则函数不是连续函数
该函数定义域
(
−
∞
,
0
)
∪
(
0
,
∞
)
(-\infty,0)\cup(0,\infty)
(−∞,0)∪(0,∞) 内连续,如果定义域变为
(
−
∞
,
∞
)
(-\infty,\infty)
(−∞,∞),则该函数在定义域内不连续
2.5.3 复合函数的连续性
2.5.4 介值定理
2.5.5 对一点的连续延伸
2.6 包含无穷的极限;图像的渐近线
2.6.1 函数的极限为有穷
例子:
2.6.2 函数的极限为无穷
例子:
2.6.2.1 无穷极限的精确定义
2.6.3 有理函数在无穷处的极限
若分子中的多项式的最高次幂小于等于分母中多项式的最高次幂,用分子分母同时除以分母中的最高次项
多项式中变量趋于无穷大时,多项式的函数值由最高次项决定
例子:
2.6.4 水平渐近线
例子:
2.6.6 倾斜渐近线
如果分子中多项式的最高次幂大于分母中多项式的最高次幂,则用长除法拆分成线性+余数的形式
例子:
2.6.5 垂直渐近线
分母为0时的x为垂直渐近线(即函数中在该值处无定义)
例子:
3.极限导论
3.1 极限的基本思想
极限描述了函数在一个定点附近的行为
f
(
2.01
)
=
1.01
f(2.01)=1.01
f(2.01)=1.01,
f
(
1.999
)
=
0.999
f(1.999)=0.999
f(1.999)=0.999
当
x
x
x 充分接近于 2 但不等于 2 时,
f
(
x
)
f(x)
f(x) 就越接近于1
lim
x
→
2
f
(
x
)
=
1
\lim_{x\rightarrow2}f(x)=1
x→2limf(x)=1
等式左边实际上不是
x
x
x 的函数!!!
变量
x
x
x 只是一个虚拟变量(一个暂时的标记),用来表示某个非常接近于2的量
这里可以将
x
x
x 替换成其他任意字母(即某个量)
lim
q
→
2
f
(
q
)
=
1
lim
b
→
2
f
(
b
)
=
1
lim
z
→
2
f
(
z
)
=
1
\lim_{q\rightarrow2}f(q)=1 \\ \lim_{b\rightarrow2}f(b)=1 \\ \lim_{z\rightarrow2}f(z)=1
q→2limf(q)=1b→2limf(b)=1z→2limf(z)=1
g
(
x
)
=
{
x
−
1
i
f
x
≠
2
,
3
i
f
x
=
2
g(x)= \begin{cases} x-1 \quad &if\quad x \neq2,\\ 3 \qquad &if \quad x=2 \end{cases}
g(x)={x−13ifx=2,ifx=2
lim
x
→
2
g
(
x
)
=
1
\lim_{x\rightarrow2}g(x)=1
x→2limg(x)=1
g
(
2
)
g(2)
g(2) 的值与极限无关!!!
只有那些在
x
x
x 接近于 2 时的
g
(
x
)
g(x)
g(x) 值,而不是在 2 处的
g
(
x
)
g(x)
g(x) 值,才是问题的关键
3.2 左极限与右极限
极限描述了函数在一个定点附近的行为
登山者从左侧沿山路行走,走到 x = 3 x=3 x=3 时山的高度为 y = 1 y=1 y=1(左极限)
lim
x
→
3
−
h
(
x
)
=
1
\lim_{x\rightarrow3^-}h(x)=1
x→3−limh(x)=1
符号
x
→
3
−
x\rightarrow3^-
x→3− 代表此极限只涉及小于
3
3
3 的
x
x
x 的值,也就是说,你需要在
3
3
3 上减一点点来看会发生什么情况
登山者从右侧沿山路行走,走到
x
=
3
x=3
x=3 时山的高度为
y
=
−
2
y=-2
y=−2(右极限)
lim
x
→
3
+
h
(
x
)
=
−
2
\lim_{x\rightarrow3^+}h(x)=-2
x→3+limh(x)=−2
符号 x → 3 + x\rightarrow3^+ x→3+ 代表此极限只涉及大于 3 3 3 的 x x x 的值,也就是说,你需要在 3 3 3 上加一点点来看会发生什么情况
3.3 何时不会存在极限
当左极限 ≠ \neq = 右极限时,双侧极限不存在
例如下图中两个函数在 x → 0 x\rightarrow0 x→0时的左右极限不等,则 x → 0 x\rightarrow0 x→0时的双侧极限不存在
3.4 在正无穷和负无穷处的极限
如下图:
右侧水平渐近线
y
=
0
y=0
y=0
左侧水平渐近线
y
=
0
y=0
y=0
3.5 关于渐近线的两个常见误解
误解一:一个函数一定要在左右两边有相同的水平渐近线
误解二:一个函数不可能和它的渐近线相交
3.6 夹逼定理(三明治定理)
夹逼定理例子1:
x
>
0
x \gt 0
x>0,证明
g
(
x
)
≤
f
(
x
)
≤
h
(
x
)
g(x) \leq f(x) \leq h(x)
g(x)≤f(x)≤h(x)
h
(
x
)
=
x
f
(
x
)
=
x
s
i
n
(
1
x
)
(
0
<
x
<
0.3
)
g
(
x
)
=
−
x
h(x)=x \\ f(x)=xsin(\frac{1}{x}) \quad (0 \lt x \lt 0.3) \\ g(x)=-x
h(x)=xf(x)=xsin(x1)(0<x<0.3)g(x)=−x
夹逼定理例子2证明:
lim
x
→
∞
s
i
n
(
x
)
x
=
0
\lim_{x \rightarrow \infty} \frac{sin(x)}{x}=0
x→∞limxsin(x)=0
3.7 极限的基本类型小结
(1)在
x
=
a
x=a
x=a 时的右极限
(2)在
x
=
a
x=a
x=a 时的左极限
(3)在
x
=
a
x=a
x=a 时的双侧极限
(4)在
x
=
∞
x=\infty
x=∞ 时的极限
(5)在 x = − ∞ x=-\infty x=−∞ 时的极限