极限与连续性


此篇为两本书的相同内容,并没有进行整合,可能有重合部分

2.极限与连续性

2.1 变化率和曲线的割线和切线

2.1.1 平均变化率和割线


2.1.2 瞬时变化率和切线

lim ⁡ h → 0 Δ y Δ x = lim ⁡ h → 0 f ( x 2 ) − f ( x 1 ) h = lim ⁡ h → 0 f ( x 1 + h ) − f ( x 1 ) h (其中, h = x 2 − x 1 ) \lim_{h\rightarrow 0}\frac{\Delta y}{\Delta x}=\lim_{h\rightarrow 0}\frac{f(x_2)-f(x_1)}{h}=\lim_{h\rightarrow 0}\frac{f(x_1+h)-f(x_1)}{h}(其中,h=x_2-x_1) h0limΔxΔy=h0limhf(x2)f(x1)=h0limhf(x1+h)f(x1)(其中,h=x2x1

2.2 函数的极限和极限法则

先看一个例子,观察当 x x x 接近于 1时,函数值的表现


即当 x x x 足够接近于 1 时,函数值接近于 2

2.2.1 极限


当 x 不断接近于 c 时(不包含 c 本身),函数值不断接近于 L,这时我们说:x 接近于 c 时,有极限 L

例子:

例子:

2.2.2 极限法则

2.2.3 估算多项式和有理函数的极限


例子:

2.2.4 三明治定理(夹逼准则)


2.3 极限的精确定义

先给一个例子:

2.3.1 极限的定义

通过控制 δ \delta δ 使函数值 f ( x ) f(x) f(x) 落在区间 ( L − ϵ , L + ϵ ) (L-\epsilon,L+\epsilon) (LϵL+ϵ) 中,通过调整 δ \delta δ 不断缩小区间,从而找到极限值 L L L



例子:

如何根据所给函数 f ,极限值 L,某值 c,来找到 δ \delta δ


例子:

2.4 单侧极限

2.4.1 单侧极限的精确定义

2.4.1.1 右极限


2.4.1.2 左极限

2.4.2 包含 s i n θ θ \frac{sin\theta}{\theta} θsinθ 的极限

2.5 连续性

2.5.1 在某点处连续

例子:

2.5.2 连续函数

在函数定义域内每个点都连续的函数,如果在定义域内某个点或多个点不连续,则函数不是连续函数


该函数定义域 ( − ∞ , 0 ) ∪ ( 0 , ∞ ) (-\infty,0)\cup(0,\infty) (,0)(0,) 内连续,如果定义域变为 ( − ∞ , ∞ ) (-\infty,\infty) (,),则该函数在定义域内不连续

2.5.3 复合函数的连续性

2.5.4 介值定理

2.5.5 对一点的连续延伸

2.6 包含无穷的极限;图像的渐近线

2.6.1 函数的极限为有穷


例子:

2.6.2 函数的极限为无穷

例子:

2.6.2.1 无穷极限的精确定义


2.6.3 有理函数在无穷处的极限

若分子中的多项式的最高次幂小于等于分母中多项式的最高次幂,用分子分母同时除以分母中的最高次项
多项式中变量趋于无穷大时,多项式的函数值由最高次项决定

例子:

2.6.4 水平渐近线


例子:

2.6.6 倾斜渐近线

如果分子中多项式的最高次幂大于分母中多项式的最高次幂,则用长除法拆分成线性+余数的形式

例子:

2.6.5 垂直渐近线

分母为0时的x为垂直渐近线(即函数中在该值处无定义)


例子:

3.极限导论

3.1 极限的基本思想

极限描述了函数在一个定点附近的行为

f ( 2.01 ) = 1.01 f(2.01)=1.01 f(2.01)=1.01 f ( 1.999 ) = 0.999 f(1.999)=0.999 f(1.999)=0.999
x x x 充分接近于 2 但不等于 2 时, f ( x ) f(x) f(x) 就越接近于1

lim ⁡ x → 2 f ( x ) = 1 \lim_{x\rightarrow2}f(x)=1 x2limf(x)=1
等式左边实际上不是 x x x 的函数!!!
变量 x x x 只是一个虚拟变量(一个暂时的标记),用来表示某个非常接近于2的
这里可以将 x x x 替换成其他任意字母(即某个量)
lim ⁡ q → 2 f ( q ) = 1 lim ⁡ b → 2 f ( b ) = 1 lim ⁡ z → 2 f ( z ) = 1 \lim_{q\rightarrow2}f(q)=1 \\ \lim_{b\rightarrow2}f(b)=1 \\ \lim_{z\rightarrow2}f(z)=1 q2limf(q)=1b2limf(b)=1z2limf(z)=1


g ( x ) = { x − 1 i f x ≠ 2 , 3 i f x = 2 g(x)= \begin{cases} x-1 \quad &if\quad x \neq2,\\ 3 \qquad &if \quad x=2 \end{cases} g(x)={x13ifx=2,ifx=2
lim ⁡ x → 2 g ( x ) = 1 \lim_{x\rightarrow2}g(x)=1 x2limg(x)=1
g ( 2 ) g(2) g(2) 的值与极限无关!!!
只有那些 x x x 接近于 2 时的 g ( x ) g(x) g(x) 值,而不是在 2 处 g ( x ) g(x) g(x) 值,才是问题的关键

3.2 左极限与右极限

极限描述了函数在一个定点附近的行为

登山者从左侧沿山路行走,走到 x = 3 x=3 x=3 时山的高度为 y = 1 y=1 y=1左极限

lim ⁡ x → 3 − h ( x ) = 1 \lim_{x\rightarrow3^-}h(x)=1 x3limh(x)=1
符号 x → 3 − x\rightarrow3^- x3 代表此极限只涉及小于 3 3 3 x x x 的值,也就是说,你需要在 3 3 3 上减一点点来看会发生什么情况

登山者从右侧沿山路行走,走到 x = 3 x=3 x=3 时山的高度为 y = − 2 y=-2 y=2右极限
lim ⁡ x → 3 + h ( x ) = − 2 \lim_{x\rightarrow3^+}h(x)=-2 x3+limh(x)=2

符号 x → 3 + x\rightarrow3^+ x3+ 代表此极限只涉及大于 3 3 3 x x x 的值,也就是说,你需要在 3 3 3 上加一点点来看会发生什么情况

3.3 何时不会存在极限

当左极限 ≠ \neq = 右极限时,双侧极限不存在

例如下图中两个函数在 x → 0 x\rightarrow0 x0时的左右极限不等,则 x → 0 x\rightarrow0 x0时的双侧极限不存在


3.4 在正无穷和负无穷处的极限


如下图:
右侧水平渐近线 y = 0 y=0 y=0
左侧水平渐近线 y = 0 y=0 y=0

3.5 关于渐近线的两个常见误解

误解一:一个函数一定要在左右两边有相同的水平渐近线

误解二:一个函数不可能和它的渐近线相交

3.6 夹逼定理(三明治定理)



夹逼定理例子1: x > 0 x \gt 0 x>0,证明 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x) \leq f(x) \leq h(x) g(x)f(x)h(x)

h ( x ) = x f ( x ) = x s i n ( 1 x ) ( 0 < x < 0.3 ) g ( x ) = − x h(x)=x \\ f(x)=xsin(\frac{1}{x}) \quad (0 \lt x \lt 0.3) \\ g(x)=-x h(x)=xf(x)=xsin(x1)(0<x<0.3)g(x)=x

夹逼定理例子2证明:
lim ⁡ x → ∞ s i n ( x ) x = 0 \lim_{x \rightarrow \infty} \frac{sin(x)}{x}=0 xlimxsin(x)=0

3.7 极限的基本类型小结

(1)在 x = a x=a x=a 时的右极限

(2)在 x = a x=a x=a 时的左极限

(3)在 x = a x=a x=a 时的双侧极限

(4)在 x = ∞ x=\infty x= 时的极限

(5)在 x = − ∞ x=-\infty x= 时的极限

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值