图解格林公式

本文深入浅出地介绍了格林公式及其在单连通和复连通区域的应用。通过左手规则,解释了边界方向与旋度的关系,并展示了如何利用旋度计算环流量。文中通过匀速圆周运动的例子,证明了环流量与旋度的等价性,进一步阐述了格林公式的物理意义。此外,讨论了速度向量与边界方向的夹角对环流量的影响,强调了角度正负与环流量的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.图解格林公式

推荐文章:kaysen学长:格林公式史上最通俗最透彻讲解
笔记来源:小元老师:重积分、曲线积分、曲面积分【合集】【小元老师】高等数学,考研数学,高数基础

1.1 单连通区域、复连通区域


单连通区域边界逆时针为正(机器人左手拿水壶,只有逆时针沿边界行走,才可以将水浇入内部)
复连通区域内边界顺时针为正向(雪人左手拿水壶,只有顺时针行走时,水才能浇入内外边界之间)

1.2 格林公式


封闭曲线的曲线积分(环流量) = 旋度的二重积分(每一点旋度的叠加)
环流量表示某一点流入和流出的量的多少
旋度表示某一点处附近旋转速度的快慢
如果逆时针旋转(规定旋度为正),旋转速度越快,则旋度越大
如果顺时针旋转(规定旋度为负),旋转速度越快,则旋度绝对值越大


匀速圆周运动,速度方向正交与半径,其余两个向量是速度向量的分向量



上面两张图证明了每个点的旋度为 2 ω 2\omega 2ω

计算速度场中半径为 r r r 的圆周运动的环流量


计算速度场中半径为 r r r 的圆周运动的旋度


通过以上运算得知:某点附近区域的环流量=某点附近区域的旋度(由此验证了格林公式)
假如哪吒在这个水中搅动(角速度变大),则旋度越大,环流量越大


速度向量与边界方向的夹角为锐角时,最后算出来的环流量为正,反之若为钝角则环流量为负


证明格林公式






评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值