1.图解三重积分的对称性
关于三重积分详见:三重积分(Triple Integral)
三重积分的对称性原理与二重积分类似,关于二重积分的对称性详见:图解二重积分的对称性
被积函数 f ( x , y , z ) f(x,y,z) f(x,y,z)可以有不同的物理意义,本文以体密度为例,容易在三维空间可视化。 f ( x , y , z ) f(x,y,z) f(x,y,z)表示点 ( x , y , z ) (x,y,z) (x,y,z)处的密度大小。其实在图中积分区域上可以用颜色深浅表示密度大小,画图有些繁琐,故图中并没有可视化被积函数。本文图中只用了两种颜色区分 Ω 1 、 Ω 2 \Omega_1、\Omega_2 Ω1、Ω2
密度和质量可以是负数? 关于这个问题详见:【物理】密度可以为负数吗?有什么意义?——液体密度参照系
1.1积分区域 Ω \Omega Ω是关于 x x x的偶函数(即关于 y o z yoz yoz平面对称)
1.2积分区域 Ω \Omega Ω是关于 y y y的偶函数(即关于 x o z xoz xoz平面对称)
1.3积分区域 Ω \Omega Ω是关于 z z z的偶函数(即关于 x o y xoy xoy平面对称)
2.三重积分的轮换对称性
轮换对称性意味着积分区域
Ω
\Omega
Ω的表达式在
x
、
y
、
z
x、y、z
x、y、z互换后形式仍不变,即积分与积分变量无关
例:设
Ω
=
{
(
x
,
y
,
z
)
∣
x
2
+
y
2
+
z
2
≤
1
}
\Omega=\{(x,y,z)|x^2+y^2+z^2\leq1\}
Ω={(x,y,z)∣x2+y2+z2≤1},求
∭
Ω
z
2
d
x
d
y
d
z
=
\iiint_{\Omega}z^2dxdydz=
∭Ωz2dxdydz=
积分区域
Ω
\Omega
Ω表达式:
x
2
+
y
2
+
z
2
≤
1
x^2+y^2+z^2\leq1
x2+y2+z2≤1
在原表达式基础上变量
x
、
y
x、y
x、y互换后表达式为:
y
2
+
x
2
+
z
2
≤
1
y^2+x^2+z^2\leq1
y2+x2+z2≤1,表达式不变
在原表达式基础上变量
y
、
z
y、z
y、z互换后表达式为:
x
2
+
z
2
+
y
2
≤
1
x^2+z^2+y^2\leq1
x2+z2+y2≤1,表达式不变
在原表达式基础上变量
x
、
z
x、z
x、z互换后表达式为:
z
2
+
y
2
+
x
2
≤
1
z^2+y^2+x^2\leq1
z2+y2+x2≤1,表达式不变
通过验证,积分区域具有轮换对称性,则将被积函数中
z
z
z替换为
x
x
x和
y
y
y后积分大小不变
∭
Ω
z
2
d
x
d
y
d
z
=
∭
Ω
x
2
d
x
d
y
d
z
=
∭
Ω
y
2
d
x
d
y
d
z
\iiint_{\Omega}z^2dxdydz=\iiint_{\Omega}x^2dxdydz=\iiint_{\Omega}y^2dxdydz
∭Ωz2dxdydz=∭Ωx2dxdydz=∭Ωy2dxdydz
∭
Ω
z
2
d
x
d
y
d
z
=
1
3
(
∭
Ω
x
2
d
x
d
y
d
z
+
∭
Ω
y
2
d
x
d
y
d
z
+
∭
Ω
z
2
d
x
d
y
d
z
)
∭
Ω
z
2
d
x
d
y
d
z
=
1
3
(
∭
Ω
x
2
+
y
2
+
z
2
d
x
d
y
d
z
)
\iiint_{\Omega}z^2dxdydz=\frac{1}{3}\big(\iiint_{\Omega}x^2dxdydz+\iiint_{\Omega}y^2dxdydz+\iiint_{\Omega}z^2dxdydz\big)\\ ~\\ \iiint_{\Omega}z^2dxdydz=\frac{1}{3}\big(\iiint_{\Omega}x^2+y^2+z^2dxdydz\big)
∭Ωz2dxdydz=31(∭Ωx2dxdydz+∭Ωy2dxdydz+∭Ωz2dxdydz) ∭Ωz2dxdydz=31(∭Ωx2+y2+z2dxdydz)
因积分区域为球体,所以使用球坐标系求解较为简单
∭
Ω
x
2
+
y
2
+
z
2
d
x
d
y
d
z
=
∫
0
2
π
d
θ
∫
0
π
d
ϕ
∫
0
R
r
2
⋅
r
2
s
i
n
ϕ
d
r
=
4
5
π
R
5
\iiint_{\Omega}x^2+y^2+z^2dxdydz=\int_{0}^{2\pi}d\theta\int_{0}^{\pi}d\phi\int_{0}^{R}r^2\cdot r^2sin\phi dr=\frac{4}{5}\pi R^5
∭Ωx2+y2+z2dxdydz=∫02πdθ∫0πdϕ∫0Rr2⋅r2sinϕdr=54πR5
最终结果如下:
∭
Ω
z
2
d
x
d
y
d
z
=
1
3
⋅
4
5
π
R
5
=
R=1
4
15
π
\iiint_{\Omega}z^2dxdydz=\frac{1}{3}\cdot\frac{4}{5}\pi R^5\overset{\text{R=1}}{=}\frac{4}{15}\pi
∭Ωz2dxdydz=31⋅54πR5=R=1154π