迭代解法:Jacobi、Gauss-Seidel、SOR

1. 迭代解法:Jacobi、Gauss-Seidel、SOR

声明:大部分内容为课上PPT与GPT生成内容

在自然科学和工程技术中很多问题的解决常常归结为求解线性代数方程组。

1.1 背景介绍

线性代数方面的计算方法就是:
(1)研究求解线性方程组的一些数值解法
(2)研究计算矩阵的特征值及特征向量的数值方法。

直接解法:是指在假设没有舍入误差的条件下,经过有限次算数运算就能求得方程组精确解的方法。
具体方法:高斯消去法、列主元高斯消去法、约当消去法、三角分解法(LU、Cholesky)

迭代解法:是从一个已知的初始近似值开始,按一定的法则逐步求出解的各个更准确的近似值的方法,它是用某种极限过程去逐步逼近精确解的方法。

常用迭代解方法:Jacobi、Gauss-Seidel、SOR(超松弛)

1.2 误差基本知识

1.2.1 绝对误差(近似值-准确值(未知))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值