补题
- 因为之前没有全部做出来,所以还需要补题
GCD and MST
题意:
给你一个序列,再给你一种建图方法:相邻元素之间有一个权值为p的边,如果有l-r,gcd(a[l]…a[r]) = min(a[l]…a[r])则l-r有一条权值为min(a[l],…a[r])的边,然后问你这个图的最小生成树的权值之和为多少
思路:
首先答案我们可以初始化为全部用p的边,然后我们在逐步的使用娶她的边把p边进行替换,然后用优先队列维护一个值最小的点,旁边的点只要是他的倍数就可以和他相连,然后一直替换就行,注意大vis标记时间复杂度是够的。
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 2e5+5;
int a[maxn];
priority_queue<pair<int,int>, vector<pair<int,int> >,greater<pair<int,int> > >q;
int vis[maxn];
int main(){
int t;
scanf("%d",&t);
while(t--){
int n;
ll p;
scanf("%d%lld",&n,&p);
memset(vis,0,sizeof vis);
while(!q.empty())q.pop();
for(int i = 1;i <=n;i++){
scanf("%d",&a[i]);
q.push(make_pair(a[i],i));
}
ll ans = p*(n-1);
while(!q.empty()){
pair<int,int> now = q.top();
q.pop();
int loc = now.second;
int vlau = now.first;
// cout<<vlau<<endl;
if(vis[loc])continue;
vis[loc] = 1;
if(vlau>p)break;
int l = 1,r = 1;
int nu = 0;
while(a[loc-l]%a[loc]==0){
if(vis[loc-l])break;
vis[loc-l+1] = 1;
if(loc-l<1)break;
nu++;
l++;
}
while(a[loc+r]%a[loc]==0){
if(vis[loc+r])break;
vis[loc+r-1] = 1;
if(loc+r>n)break;
nu++;
r++;
}
ans += 1LL*a[loc]*(nu);
ans -= p*(nu);
}
printf("%lld\n",ans);
}
}
Integers Have Friends
题意:给一个序列,然后问最长的连续同余的子序列的大小
思路:
首先就是同余的定义我们先做一个差分,然后连续同余就是差分后的数组维护一个最大连续的长度的子序列,满足这个子序列的gcd不为1,然后就是用st表预处理,然后尺取法就ok了
AC代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 4e5+5;
ll a[maxn];
ll b[maxn];
ll f[maxn][32];
int n;
ll gcd(ll a,ll b){
if(b==0)return a;
return gcd(b,a%b);
}
// void inits(){
// for(int i )
// }
void RMQ(){
int t = log2(n-1)+1;
for(int i = 1;i <= n-1;i++){
f[i][0] = b[i];
}
for(int i = 1;i < t;i++){
for(int j = 1;j <= n - (1<<i) ; j++){
f[j][i] = gcd(f[j][i-1],f[j+(1<<(i-1))][i-1]);
}
}
}
ll ask(int l,int r){
int t = log2(r-l+1);
if(f[l][t]>f[r-(1<<t)+1][t])return gcd(f[l][t],f[r-(1<<t)+1][t]);
else return gcd(f[r-(1<<t)+1][t],f[l][t]);
}
int main(){
int t;
scanf("%d",&t);
// inits();
while(t--){
scanf("%d",&n);
for(int i = 1;i<=n;i++){
scanf("%lld",&a[i]);
}
if(n==1){
printf("1\n");
continue;
}
else if(n==2){
if(abs(a[2]-a[1]) != 1){
printf("2\n");
}
else printf("1\n");
continue;
}
for(int i = 2;i <= n;i++){
b[i-1] = abs(a[i] - a[i-1]);
}
RMQ();
int l,r;
l = r = 1;
int ans = 1;
while(r<n){
if(l>=r){
if(b[l]!=1)ans = max(2,ans);
r++;continue;
}
ll g = ask(l,r);
if(g>1){
r++;
ans = max(ans,r-l+1);
}
else l++;
}
printf("%d\n",ans);
}
}