上次训练补充题解

本文介绍了两道编程竞赛题目,分别涉及最小生成树(Minimum Spanning Tree, MST)的求解策略和最长连续同余子序列的寻找方法。在GCDandMST问题中,通过优先队列优化处理最小生成树的构建,降低边的权值。而在IntegersHaveFriends问题中,利用差分数组和ST表维护最大连续同余子序列的长度。这两个问题都展示了动态规划和数学思维在解决算法问题中的应用。
摘要由CSDN通过智能技术生成

补题

  • 因为之前没有全部做出来,所以还需要补题

GCD and MST

题意:
给你一个序列,再给你一种建图方法:相邻元素之间有一个权值为p的边,如果有l-r,gcd(a[l]…a[r]) = min(a[l]…a[r])则l-r有一条权值为min(a[l],…a[r])的边,然后问你这个图的最小生成树的权值之和为多少

思路:
首先答案我们可以初始化为全部用p的边,然后我们在逐步的使用娶她的边把p边进行替换,然后用优先队列维护一个值最小的点,旁边的点只要是他的倍数就可以和他相连,然后一直替换就行,注意大vis标记时间复杂度是够的。

AC代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 2e5+5;
int a[maxn];
priority_queue<pair<int,int>, vector<pair<int,int> >,greater<pair<int,int> > >q;
int vis[maxn];
int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        int n;
        ll p;
        scanf("%d%lld",&n,&p);
        memset(vis,0,sizeof vis);
        while(!q.empty())q.pop();
        for(int i = 1;i <=n;i++){
            scanf("%d",&a[i]);
            q.push(make_pair(a[i],i));
        }
        ll ans = p*(n-1);
        while(!q.empty()){
            pair<int,int> now = q.top();
            q.pop();
            int loc = now.second;
            int vlau = now.first;
            // cout<<vlau<<endl;
            if(vis[loc])continue;
            vis[loc] = 1;
            if(vlau>p)break;
            int l = 1,r = 1;
            int nu = 0;
            while(a[loc-l]%a[loc]==0){
                if(vis[loc-l])break;
                vis[loc-l+1] = 1;
                if(loc-l<1)break;
                nu++;
                l++;
            }
            while(a[loc+r]%a[loc]==0){
                if(vis[loc+r])break;
                vis[loc+r-1] = 1;
                if(loc+r>n)break;
                nu++;
                r++;
            }
            ans += 1LL*a[loc]*(nu);
            ans -= p*(nu);
        }
        printf("%lld\n",ans);
    }
}

Integers Have Friends

题意:给一个序列,然后问最长的连续同余的子序列的大小

思路:
首先就是同余的定义我们先做一个差分,然后连续同余就是差分后的数组维护一个最大连续的长度的子序列,满足这个子序列的gcd不为1,然后就是用st表预处理,然后尺取法就ok了

AC代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 4e5+5;
ll a[maxn];
ll b[maxn];
ll f[maxn][32];
int n;
ll gcd(ll a,ll b){
    if(b==0)return a;
    return gcd(b,a%b);
}
// void inits(){
//     for(int i )
// }
void RMQ(){
    int t = log2(n-1)+1;
    for(int i = 1;i <= n-1;i++){
        f[i][0] = b[i];
    }
    for(int i = 1;i < t;i++){
        for(int j = 1;j  <= n - (1<<i) ; j++){
            f[j][i] = gcd(f[j][i-1],f[j+(1<<(i-1))][i-1]);
        }
    } 
}
ll ask(int l,int r){
    int t = log2(r-l+1);
    if(f[l][t]>f[r-(1<<t)+1][t])return gcd(f[l][t],f[r-(1<<t)+1][t]);
    else return gcd(f[r-(1<<t)+1][t],f[l][t]);
}
int main(){
    int t;
    scanf("%d",&t);
    // inits();
    while(t--){
        scanf("%d",&n);
        for(int i = 1;i<=n;i++){
            scanf("%lld",&a[i]);
        }
        if(n==1){
            printf("1\n");
            continue;
        }
        else if(n==2){
            if(abs(a[2]-a[1]) != 1){
                printf("2\n");
            }
            else printf("1\n");
            continue;
        }
        for(int i = 2;i <= n;i++){
            b[i-1] = abs(a[i] - a[i-1]);
        }
        RMQ();
        int l,r;
        l = r = 1;
        int ans = 1;
        while(r<n){
            if(l>=r){
                if(b[l]!=1)ans = max(2,ans);
                r++;continue;
            }
            ll g = ask(l,r);
            if(g>1){
                r++;
                ans = max(ans,r-l+1);
            }
            else l++;
        }
        printf("%d\n",ans);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值