- 博客(16)
- 收藏
- 关注
原创 SEED数据集预处理(MATLAB)
参考链接:http://t.csdnimg.cn/7mMfGhttp://t.csdnimg.cn/7mMfGhttp://t.csdnimg.cn/4B7gOhttp://t.csdnimg.cn/4B7gO该数据集已经经过了官方的预处理,理论上可以直接使用。 官方采用的预处理操作如下: 1.数据下采样到200hz; 2.0-75hz的带通滤波;根据China_information可知,15个电影片段共来自6部电影。对应三种情绪(积极、消极、中性)。有文件可知,
2024-05-05 16:15:28 884
原创 根据源码配置深度学习环境
根据源码的文档说明,先创建虚拟环境,然后再虚拟环境内安装代码所需要的库虚拟环境常用操作: 具体请参考文件"D:\桌面文件\资料\1\Python深度学习(1):安装Anaconda、PyTorch(GPU版)库与PyCharm.pdf"pycharm右下角解释器设置,下图设置图标处选择显示全部解释器,弹出Python解释器对话框,在对话框中选择+号 选择+号后点conda虚拟环境,然后现有环境,然后点击箭头处三个点,添加解释器的地址, 如此解释器就链接上虚拟环境了
2024-03-24 16:40:20 310 1
原创 深度学习(Deep Learning)未完待续……
2. 残差连接:ResNet-18使用了残差连接(residual connection)来解决梯度消失和梯度爆炸的问题,这种连接方式可以跳过几层,直接将输入传递给后面的层,使得网络可以学习到输入与输出之间的残差,进一步改善模型的性能。而LeNet没有使用这种连接方式。而LeNet主要使用较小的尺寸(如5x5和3x3)的卷积核,适用于处理较小的图像。总之,ResNet-18是一个更深、更复杂的网络结构,适用于处理更大和更复杂的图像数据集,而LeNet则是一个相对简单的网络结构,适用于处理较小的图像数据集。
2024-02-03 15:32:19 734 1
原创 细节决定成败
具体文献博客DataFrame(3):DataFrame常用属性说明_dataframe的属性-CSDN博客#导入相应模块#用DataFrame让数据集更加直观(表格表示形式)iris_data['target']=iris_target #加一列目标值列(target)
2024-02-01 12:31:58 476 1
原创 特征工程(对特征进行处理)
【2023 最新数据分析(机器学习) 绝对是B站讲的最好的,这一套学会搞定全部核心知识都在这里】https://www.bilibili.com/video/BV1v84y1c7pT?
2023-11-12 16:53:33 91 1
原创 matplotlib绘图(只能绘制比较简单单一的图)(pyecharts可以绘制比较美观的图,以后用到在学,链接在文章最后)
可以观测数据之间有没有线性关系。
2023-11-12 14:19:10 108 1
原创 机器学习之数据分析
让机器通过已有的数据进行学习,然后用学到的知识对新数据进行预测大体分为三类:回归、分类、聚类回归:预测某个数值分类:预测属于哪个类别。
2023-11-11 20:02:05 726 1
原创 支持向量机(SVM)(原理和用法)
⽀持向量机是在深度学习流⾏起来之前效果最好的模型。基本原理是⼆分类线性分类器,但现在也可以解决多分类问题,⾮线性问题,和回归问题。
2023-11-05 16:31:34 276
原创 K近邻算法(KNN)
num:图像编号或名称,数字为编号 ,字符串为名称figsize:指定figure的宽和高,单位为英寸;dpi: 参数指定绘图对象的分辨率,即每英寸多少个像素;facecolor: 背景颜色;edgecolor:: 边框颜色;frameon: 是否显示边框。object:创建的数组的对象,可以为单个值,列表,元胞等。dtype:创建数组中的数据类型。返回值:给定对象的数组。
2023-11-04 20:08:40 79 1
原创 Python学习记录(持续更新)
如果需要将输入转换为其他类型,可以使用相应的类型转换函数,如int()、float()等。Python中的input函数没有type属性,它会将用户输入的内容默认为字符串类型。
2023-10-15 21:01:35 74
原创 非监督学习主要算法简介
降维可以帮助我们更好地理解数据,同时还能减少特征的数量,这样也就使得机器学习算法的计算量更小,从而更快地训练模型。从数据集中随机选取k个初始聚类中心,计算其余数据对象与与聚类中心的欧氏距离,找出离目标数据对象最近的聚类中心,并将数据对象分配到聚类中心所对应的簇中。聚类(K-means算法):对给定的样本集,用欧氏距离作为衡量数据对象间相似度的指标,相似度与数据对象间的距离成反比,计算每个簇中数据对象的平均值作为新的聚类中心,进行下一次迭代,聚类中心不再变化或达到最大的迭代次数时停止。
2023-10-12 15:46:23 67
原创 初识机器学习
机器学习就是机器模仿人的学习行为,然后从数据中获取经验能力,技能的过程。简单来说,就是给机器一堆数据,让机器去学习,建立模型,然后来预测结果的过程。:给出带标签数据集(标准答案)让机器进行学习,学习之后在此基础上举一反三。:给出少部分带标签的数据集,和大部分无标签的数据集。让机器通过尽可能少的标签去学习尽可能精确的分类。强化学习:(我不告诉你标准答案,但告诉你规则,你自己钻研)我只给你一点点标准答案,你学会举一反百)(我不给你标准答案,你给我合理答案)我给你标准答案,你学会举一反三)
2023-08-02 10:59:16 73
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人