Python 是数据分析和科学计算的强大工具,其中 NumPy 和 Pandas 是最受欢迎的两个库。NumPy 提供了高性能的多维数组对象和相关操作,而 Pandas 则提供了强大的数据结构和数据分析工具。本篇博文将详细介绍 NumPy 和 Pandas 的基础知识,并附上一个综合详细的例子。
1、NumPy 基础
NumPy(Numerical Python)是一个用于处理大型多维数组和矩阵的库,此外还提供了许多数学函数来操作这些数组。
安装 NumPy
首先,使用 pip 安装 NumPy:
pip install numpy
NumPy 数组
NumPy 的核心是 ndarray 对象,它是一个多维数组。以下是创建 NumPy 数组的几种方式:
import numpy as np
# 从列表创建数组
array1 = np.array([1, 2, 3, 4, 5])
# 创建全零数组
array2 = np.zeros((3, 4))
# 创建全一数组
array3 = np.ones((2, 3))
# 创建单位矩阵
array4 = np.eye(3)
# 创建随机数组
array5 = np.random.random((2, 2))
数组操作
NumPy 提供了丰富的数组操作方法:
# 数组形状
print(array1.shape)
# 数组重塑
array6 = array1.reshape((5, 1))
# 数组切片
print(array1[1:3])
# 数组广播
array7 = np.array([1, 2, 3])
array8 = array7 + 1
# 数组运算
array9 = np.array([1, 2, 3])
array10 = np.array([4, 5, 6])
print(array9 + array10)
print(array9 * array10)
数学函数
NumPy 提供了许多数学函数来操作数组: