Python数据分析:Numpy、Pandas基础

Python 是数据分析和科学计算的强大工具,其中 NumPy 和 Pandas 是最受欢迎的两个库。NumPy 提供了高性能的多维数组对象和相关操作,而 Pandas 则提供了强大的数据结构和数据分析工具。本篇博文将详细介绍 NumPy 和 Pandas 的基础知识,并附上一个综合详细的例子。

1、NumPy 基础

NumPy(Numerical Python)是一个用于处理大型多维数组和矩阵的库,此外还提供了许多数学函数来操作这些数组。

安装 NumPy

首先,使用 pip 安装 NumPy:

pip install numpy
NumPy 数组

NumPy 的核心是 ndarray 对象,它是一个多维数组。以下是创建 NumPy 数组的几种方式:

import numpy as np

# 从列表创建数组
array1 = np.array([1, 2, 3, 4, 5])

# 创建全零数组
array2 = np.zeros((3, 4))

# 创建全一数组
array3 = np.ones((2, 3))

# 创建单位矩阵
array4 = np.eye(3)

# 创建随机数组
array5 = np.random.random((2, 2))
数组操作

NumPy 提供了丰富的数组操作方法:

# 数组形状
print(array1.shape)

# 数组重塑
array6 = array1.reshape((5, 1))

# 数组切片
print(array1[1:3])

# 数组广播
array7 = np.array([1, 2, 3])
array8 = array7 + 1

# 数组运算
array9 = np.array([1, 2, 3])
array10 = np.array([4, 5, 6])
print(array9 + array10)
print(array9 * array10)
数学函数

NumPy 提供了许多数学函数来操作数组:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值