计算真实熵
计算真实熵的逻辑可参考我的上一篇文章:真实熵(the actual entropy)
代码参考:真实熵与人类行为可预测性
#真实熵
import pandas as pd
import math
# 横向最多显示多少个字符, 一般80不适合横向的屏幕,平时多用200
pd.set_option('display.width', 500)
# 显示所有列
pd.set_option('display.max_columns', None)
#图书类别
Book_category = ['A','B','C','D','E','F','G','H','I','J','K','N','O','P','Q','R','S','T','U','V','X','Z']
# # 读取数据
# Person_data = pd.read_excel(r'Person_8748847336.xlsx').iloc[0: , 1:]
LOAN_DATE = ['2013/1/1', '2013/1/1', '2013/1/1', '2013/1/1', '2013/1/1', '2013/2/20', '2013/4/19', '2013/4/19', '2013/4/19', '2013/4/24', '2013/4/24', '2013/4/24', '2013/4/24', '2013/4/24', '2013/4/24', '2013/4/24', '2013/4/27', '2013/5/8', '2013/5/15', '2013/5/15', '2013/5/17', '2013/6/6', '2013/6/8', '2013/6/8', '2013/10/9', '2013/10/29', '2013/10/29', '2013/11/7', '2013/11/7', '2013/11/14', '2013/11/14', '2013/11/14', '2013/11/25', '2013/12/2', '2013/12/2', '2013/12/4', '2013/12/6', '2013/12/11', '2013/12/11', '2013/12/18', '2013/12/18', '2014/1/1', '2014/1/2', '2014/2/17', '2014/2/17', '2014/3/13', '2014/3/13', '2014/4/15', '2014/4/29', '2014/4/29', '2014/4/29', '2014/5/5', '2014/9/23', '2014/10/10', '2014/10/10', '2014/10/10', '2014/10/10', '2014/10/10', '2014/10/10', '2014/10/10', '2014/10/10', '2014/10/10', '2014/10/10', '2014/12/2', '2014/12/2', '2014/12/2', '2014/12/4', '2014/12/4', '2015/1/14', '2015/2/28', '2015/2/28', '2015/3/5', '2015/3/5', '2015/3/5', '2015/3/5', '2015/3/11', '2015/3/11', '2015/3/11', '2015/3/12', '2015/3/12', '2015/3/12', '2015/3/12', '2015/3/12', '2015/3/19', '2015/3/19']
time_number = ['2013/1/1', '2013/2/20', '2013/4/19', '2013/4/24', '2013/4/27', '2013/5/8', '2013/5/15', '2013/5/17', '2013/6/6', '2013/6/8', '2013/10/9', '2013/10/29', '2013/11/7', '2013/11/14', '2013/11/25', '2013/12/2', '2013/12/4', '2013/12/6', '2013/12/11', '2013/12/18', '2014/1/1', '2014/1/2', '2014/2/17', '2014/3/13', '2014/4/15', '2014/4/29', '2014/5/5', '2014/9/23', '2014/10/10', '2014/12/2', '2014/12/4', '2015/1/14', '2015/2/28', '2015/3/5', '2015/3/11', '2015/3/12', '2015/3/19']
ITEM_CALLNO = ['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'J', 'D']
N = len(ITEM_CALLNO) #样本数量
t_n = len(time_number) #次数
def contains(small, big):
for i in range(len(big)-len(small)+1):
if big[i:i+len(small)] == small:
return True
return False
def actual_entropy(l):
n = len(l)
sequence = []
sum_A = 0
for i in range(0, n):
for j in range(i+1, n+1):
s = l[i:j]
if not contains(list(s), sequence): # s is not contained in previous sequence
print(f'i={i + 1}, s:{list(s)}, Λ{i+1}={len(list(s))}, 序列:{sequence}')
sum_A += len(s) #sum_Λ
sequence.append(l[i])
break
else:
if j == n:
print(f'i={i + 1}, s:不存在这个序列, Λ{i + 1}={n - (i + 1) + 2}, 序列:{sequence}')
sum_A += n - (i + 1) + 2
sequence.append(l[i])
ae = 1 / (sum_A / n ) * math.log(n)
print("真实熵:",ae)
return ae
actual_entropy(ITEM_CALLNO)
结果:
i=1, s:['H'], Λ1=1, 序列:[]
i=2, s:['H', 'H'], Λ2=2, 序列:['H']
i=3, s:['H', 'H', 'H'], Λ3=3, 序列:['H', 'H']
i=4, s:['H', 'H', 'D'], Λ4=3, 序列:['H', 'H', 'H']
i=5, s:['H', 'D'], Λ5=2, 序列:['H', 'H', 'H', 'H']
i=6, s:['D'], Λ6=1, 序列:['H', 'H', 'H', 'H', 'H']
i=7, s:['F'], Λ7=1, 序列:['H', 'H', 'H', 'H', 'H', 'D']
i=8, s:['F', 'F'], Λ8=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F']
i=9, s:['F', 'D'], Λ9=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F']
i=10, s:['D', 'E'], Λ10=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F']
i=11, s:['E'], Λ11=1, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D']
i=12, s:['E', 'D'], Λ12=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E']
i=13, s:['D', 'D'], Λ13=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E']
i=14, s:['D', 'D'], Λ14=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D']
i=15, s:['D', 'F', 'F', 'H'], Λ15=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D']
i=16, s:['F', 'F', 'H'], Λ16=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D']
i=17, s:['F', 'H'], Λ17=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F']
i=18, s:['H', 'B'], Λ18=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F']
i=19, s:['B'], Λ19=1, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H']
i=20, s:['B', 'B'], Λ20=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B']
i=21, s:['B', 'C'], Λ21=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B']
i=22, s:['C'], Λ22=1, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B']
i=23, s:['D', 'D', 'I'], Λ23=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C']
i=24, s:['D', 'I'], Λ24=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D']
i=25, s:['I'], Λ25=1, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D']
i=26, s:['F', 'I'], Λ26=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I']
i=27, s:['I', 'F', 'D'], Λ27=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F']
i=28, s:['F', 'D', 'I'], Λ28=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I']
i=29, s:['D', 'I', 'F', 'F'], Λ29=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F']
i=30, s:['I', 'F', 'F'], Λ30=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D']
i=31, s:['F', 'F', 'D', 'F'], Λ31=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I']
i=32, s:['F', 'D', 'F'], Λ32=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F']
i=33, s:['D', 'F', 'F', 'H', 'F'], Λ33=5, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F']
i=34, s:['F', 'F', 'H', 'F'], Λ34=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D']
i=35, s:['F', 'H', 'F'], Λ35=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F']
i=36, s:['H', 'F'], Λ36=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F']
i=37, s:['F', 'F', 'F', 'F'], Λ37=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H']
i=38, s:['F', 'F', 'F', 'D', 'F'], Λ38=5, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F']
i=39, s:['F', 'F', 'D', 'F', 'D'], Λ39=5, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F']
i=40, s:['F', 'D', 'F', 'D'], Λ40=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F']
i=41, s:['D', 'F', 'D'], Λ41=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F']
i=42, s:['F', 'D', 'D'], Λ42=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D']
i=43, s:['D', 'D', 'D', 'K'], Λ43=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F']
i=44, s:['D', 'D', 'K'], Λ44=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D']
i=45, s:['D', 'K'], Λ45=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D']
i=46, s:['K'], Λ46=1, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D']
i=47, s:['K', 'D'], Λ47=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K']
i=48, s:['D', 'I', 'I'], Λ48=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K']
i=49, s:['I', 'I'], Λ49=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D']
i=50, s:['I', 'I'], Λ50=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I']
i=51, s:['I', 'D'], Λ51=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I']
i=52, s:['D', 'H'], Λ52=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I']
i=53, s:['H', 'D', 'D'], Λ53=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D']
i=54, s:['D', 'D', 'D', 'D'], Λ54=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H']
i=55, s:['D', 'D', 'D', 'D'], Λ55=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D']
i=56, s:['D', 'D', 'D', 'D'], Λ56=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D']
i=57, s:['D', 'D', 'D', 'D'], Λ57=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D']
i=58, s:['D', 'D', 'D', 'D', 'D'], Λ58=5, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D']
i=59, s:['D', 'D', 'D', 'D', 'D', 'F'], Λ59=6, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D']
i=60, s:['D', 'D', 'D', 'D', 'F'], Λ60=5, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D']
i=61, s:['D', 'D', 'D', 'F', 'K'], Λ61=5, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=62, s:['D', 'D', 'F', 'K'], Λ62=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=63, s:['D', 'F', 'K'], Λ63=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=64, s:['F', 'K'], Λ64=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=65, s:['K', 'D', 'D'], Λ65=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F']
i=66, s:['D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D'], Λ66=11, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K']
i=67, s:['D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D'], Λ67=11, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D']
i=68, s:['D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D'], Λ68=11, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D']
i=69, s:['D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D'], Λ69=11, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D']
i=70, s:['D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D'], Λ70=11, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D']
i=71, s:['D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D'], Λ71=11, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D']
i=72, s:['D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D'], Λ72=11, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D']
i=73, s:['D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D'], Λ73=11, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=74, s:['D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'J'], Λ74=11, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=75, s:['D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'J'], Λ75=10, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=76, s:['D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'J'], Λ76=9, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=77, s:['D', 'D', 'D', 'D', 'D', 'D', 'D', 'J'], Λ77=8, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=78, s:['D', 'D', 'D', 'D', 'D', 'D', 'J'], Λ78=7, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=79, s:['D', 'D', 'D', 'D', 'D', 'J'], Λ79=6, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=80, s:['D', 'D', 'D', 'D', 'J'], Λ80=5, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=81, s:['D', 'D', 'D', 'J'], Λ81=4, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=82, s:['D', 'D', 'J'], Λ82=3, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=83, s:['D', 'J'], Λ83=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=84, s:['J'], Λ84=1, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D']
i=85, s:不存在这个序列, Λ85=2, 序列:['H', 'H', 'H', 'H', 'H', 'D', 'F', 'F', 'F', 'D', 'E', 'E', 'D', 'D', 'D', 'F', 'F', 'H', 'B', 'B', 'B', 'C', 'D', 'D', 'I', 'F', 'I', 'F', 'D', 'I', 'F', 'F', 'D', 'F', 'F', 'H', 'F', 'F', 'F', 'F', 'D', 'F', 'D', 'D', 'D', 'K', 'K', 'D', 'I', 'I', 'I', 'D', 'H', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'F', 'K', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'J']
真实熵: 1.1106628141225792
下一次借书的种类数: 2.1594483556205337
计算可预测性
上面算得真实熵S=1.1106628141225792,用户可能借阅的图书种类有N=22种
计算方法
计算代码:
import mpmath
N = 22
S = 1.1106628141225792
def getPredictability(N, S):
f = lambda x: (((1-x)/(N-1)) **(1-x))* x**x - 2**(-S)
root = mpmath.findroot(f, 1)
return float(root.real)
result = getPredictability(N, S)
print(result)
计算结果:
0.8724859773218735
因此最大可预测值为87.25%
最大可预测性与真实熵S的关系
import mpmath
import numpy as np
import matplotlib.pyplot as pl
def getPredictability(N, S):
f = lambda x: (((1-x)/(N-1)) **(1-x))* x**x - 2**(-S)
root = mpmath.findroot(f, 1)
return float(root.real)
N = 22
slist = np.arange(0, 1.6 ,0.1)
plist = []
for S in slist:
p = getPredictability(N, S)
plist.append(p)
print(slist)
print(plist)
pl.plot(slist, plist, 'g-o')
pl.xlabel('$S$', fontsize = 20)
pl.ylabel('$\Pi{max}$ ', fontsize = 20)
pl.show()
结果:
[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5]
[1.0, 0.9922076523891302, 0.9828942537046568, 0.9727602729432984, 0.9619949144642034, 0.9506950566016172, 0.9389200034509394, 0.9267095019884533, 0.9140916051169893, 0.9010866935833577, 0.8877097567024888, 0.8739717816424107, 0.8598806436493308, 0.8454416965880155, 0.8306581726777373, 0.8155314542381094]
最大可预测性与访问目标种类数量N的关系
import mpmath
import numpy as np
import pandas as pd
import matplotlib.pyplot as pl
def getPredictability(N, S):
f = lambda x: (((1-x)/(N-1)) **(1-x))* x**x - 2**(-S)
root = mpmath.findroot(f, 1)
return float(root.real)
nlist = np.arange(100, 1000, 200)
slist = np.arange(0, 1.1 ,0.1)
nsplist = []
for N in nlist:
for S in slist:
p = getPredictability(N, S)
nsplist.append([N, S, p])
df = pd.DataFrame(nsplist, columns = ['N', 'S', 'P'])
print(df)
groups = df.groupby('N')
for name, group in groups:
pl.plot(group.S, group.P, label = "N = "+ str(name), marker='o', linestyle='-')
pl.legend()
pl.xlabel('$S$', fontsize = 20)
pl.ylabel('$\Pi{max}$ ', fontsize = 20)
pl.show()
结果:
N S P
0 100 0.0 1.000000
1 100 0.1 0.993476
2 100 0.2 0.985928
3 100 0.3 0.977866
4 100 0.4 0.969422
5 100 0.5 0.960665
6 100 0.6 0.951639
7 100 0.7 0.942371
8 100 0.8 0.932884
9 100 0.9 0.923194
10 100 1.0 0.913312
11 300 0.0 1.000000
12 300 0.1 0.994145
13 300 0.2 0.987482
14 300 0.3 0.980427
15 300 0.4 0.973087
16 300 0.5 0.965516
17 300 0.6 0.957748
18 300 0.7 0.949807
19 300 0.8 0.941710
20 300 0.9 0.933468
21 300 1.0 0.925094
22 500 0.0 1.000000
23 500 0.1 0.994408
24 500 0.2 0.988087
25 500 0.3 0.981415
26 500 0.4 0.974489
27 500 0.5 0.967361
28 500 0.6 0.960060
29 500 0.7 0.952607
30 500 0.8 0.945017
31 500 0.9 0.937303
32 500 1.0 0.929474
33 700 0.0 1.000000
34 700 0.1 0.994569
35 700 0.2 0.988452
36 700 0.3 0.982009
37 700 0.4 0.975332
38 700 0.5 0.968466
39 700 0.6 0.961441
40 700 0.7 0.954276
41 700 0.8 0.946986
42 700 0.9 0.939582
43 700 1.0 0.932072
44 900 0.0 1.000000
45 900 0.1 0.994683
46 900 0.2 0.988710
47 900 0.3 0.982428
48 900 0.4 0.975923
49 900 0.5 0.969241
50 900 0.6 0.962408
51 900 0.7 0.955444
52 900 0.8 0.948362
53 900 0.9 0.941172
54 900 1.0 0.933884
结论
1、真实熵越大,可预测性越小;
2、在熵不变的条件下,去过的地方(种类)越多,可预测性越强。