博弈论笔记(本科)

博弈论笔记

教材:(不确定,都可以)
Reference:
Osborm an introductory to game theory
Dixit and skeath,games of strategy
Gibbons,A Primer in Game Theory
Binmore Playing for Real:AText on game theory

评分:
participation(10%) + homework(10%) +project +presentation(20%) +final (50%)
考试题目用英文

presentation
博弈论案例或者问题,有趣的博弈问题

project

1000字(俚语俗语语言中的博弈论

别忘记细节

  1. 求纳什均衡的三种方法,剔除严格劣策略,画博弈矩阵,最优反应函数
  2. 描述一个博弈需要包括: player ; game tree(timing) , 终端历史;每个时间段或者历史对应的玩家p(h)={1};pay off ;不确定性,确定的信念。 (不需要描述策略,如果是静态博弈就把timing改成action)
  3. 不完全信息是对谁来说一定要弄清楚,不要把二者弄混淆这样就会错的。
  4. 剔除劣策略时,也要注意是看哪个payoff,这个payoff找错了,会发生剔除错的!!!一定要看清楚是哪个比哪个大,行比较列,列比较行!!!
  5. 策略需要把不完全信息加上去!!!所以就有很多啊!!!
  6. 贝叶斯均衡怎么描述qwq
  7. 博弈的扩展式就是博弈树,博弈的战略式就是博弈矩阵
  8. 概率论两个随机变量的和差
  9. 有范围的记住说一下范围,别忘啦

入门

9.13
博弈论是多人决策的问题

要素
players, choices,payoffs
timing
information

静态博弈
动态博弈

完全信息博弈
不完全信息博弈

囚徒困境,信号博弈,勇士博弈,谈判,上下游,拍卖,寡头
静态完全信息博弈,不完全信息动态博弈,动态完全信息博弈

解概念

占优策略,纳什均衡,贝叶斯均衡等

Introduction

game theory: 博弈论提供了正式研究互动策略的一系列工具。

strategic interaction: 多人决策 每个人的报酬都取决于其他人的策略

一些博弈:讨价还价 寡头竞争 拍卖 商业 政策 外交 军事冲突

博弈语言

players choices payoffs timing information

完全信息动态博弈 完全信息静态博弈 不完全信息动态博弈 不完全信息静态博弈

完全信息静态博弈

The set of players: N = { 1 , 2 , … , n } N=\{1,2,\dots ,n\} N={1,2,,n}

player i’s feasible choices : A i A_i Ai

Player i’s payoff function: u i : A 1 × A 2 ⋯ × A n → R u_i:A_1\times A_2\dots \times A_n\to R ui:A1×A2×AnR

解概念

dominance 占优

纳什均衡

背景介绍

贝叶斯均衡 等等

Prisoner’s Dilemma

囚徒困境 : 个人理性与社会最优相矛盾

占优策略,选择这个严格比另一个策略好

comments:

payoff and modeling; rationality assumption

囚徒困境的例子:

团队工作 军事竞赛 密谋勾结 公共资源(教育医疗排污环境)

解决方式: 国家 长期合作 第三方

Dominance

image-20211212151117721

players choices payoff
p l a y e r s : { 1 , 2 , … , N } p l a y e r   i ′ s   c h o i c e s : { A i } p l a y e r   i ′ s   p a y o f f : u i : A 1 × ⋯ × A n → R players:\{1,2,\dots ,N\}\\player ~i's~ choices:\{A_i\}\\player ~i's ~payoff:u_i:A_1\times \dots \times A_n\to R players:{1,2,,N}player is choices:{Ai}player is payoff:ui:A1××AnR

a = ( a 1 , a 2 , … , a n ) a − i = ( a 1 , a 2 , … , 无 a i , a i + 1 , … , a n ) A 1 × A 2 = : { ( a 1 , a 2 ) ∣ a 1 ∈ A 1 , a 2 ∈ A 2 } A 1 × ⋯ × A n = ; { ( a 1 , a 2 , … , a n ) ∣ a i ∈ A i , i = 1 , 2 , …   } A A − i a ∈ A a − i ∈ A − i a=(a_1,a_2,\dots ,a_n)\\ a_{-i}=(a_1,a_2,\dots ,无a_i,a_{i+1},\dots,a_n)\\ A_1\times A_2=:\{(a_1,a_2)|a_1\in A_1,a_2\in A_2\}\\ A_1\times \dots \times A_n=;\{(a_1,a_2,\dots,a_n)|a_i\in A_i,i=1,2,\dots\}\\ A \quad A_{-i} \quad a\in A\quad a_{-i}\in A_{-i} a=(a1,a2,,an)ai=(a1,a2,,ai,ai+1,,an)A1×A2=:{(a1,a2)a1A1,a2A2}A1××An=;{(a1,a2,,an)aiAi,i=1,2,}AAiaAaiAi

Dominance

a i a_{i} ai (strictly) dominates b i b_{i} bi if
u i ( a i , a − i ) > u i ( b i , a − i ) u_{i}\left(a_{i}, a_{-i}\right)>u_{i}\left(b_{i}, a_{-i}\right) \quad ui(ai,ai)>ui(bi,ai) for all a − i ∈ A − i a_{-i} \in A_{-i} aiAi.

b被占优,a是占优策略如果占优其他所有的行动

理性参与者不会采用劣势策略

劣势策略可以从考虑中消除

囚徒困境:每个人的占有选择导致的结果是社会次优的

Iterated Dominance(迭代的主导地位

逐步剔除被占优策略

占优可求:如果剔除的极限得到的集合是一个单元素集合

common knowledge of rationality

common knowledge: 我知道,你知道我知道,我知道你知道我知道,……

common knowledge of rationality:理性的共同知识

共同知识有更新,人们对理性的理解有更深一步的了解

Nash Equilibrium

Coordinated attack

  1. 没有期望报酬

  2. 期望去or不去

  3. 第一轮决定了后面的收敛结果:若第一次成功袭击,后面也会袭击,否则就不会袭击了

纳什均衡

( a 1 , a 2 , … , a n ) \left(a_{1}, a_{2}, \ldots, a_{n}\right) (a1,a2,,an) is a Nash equilibrium

if u i ( a i , a − i ) ≥ u i ( a i ′ , a − i ) u_{i}\left(a_{i}, a_{-i}\right) \geq u_{i}\left(a_{i}^{\prime}, a_{-i}\right) ui(ai,ai)ui(ai,ai) for all a i ′ ∈ A i a_{i}^{\prime} \in A_{i} aiAi and all i ∈ N i \in N iN.

pre-play communication

只有商量的结果是纳什均衡才会被大家遵守

最优反应函数

a i a_{i} ai is a best response to a − i a_{-i} ai if
u i ( a i , a − i ) ≥ u i ( a i ′ , a − i ) f o r   a l l   a i ′ ∈ A i . u_{i}\left(a_{i}, a_{-i}\right) \geq u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \quad for~ all ~a_{i}^{\prime} \in A_{i} . ui(ai,ai)ui(ai,ai)for all aiAi.

B i ( a − i ) B_{i}\left(a_{-i}\right) Bi(ai) : the set of best responses to a − i a_{-i} ai.

纳什均衡的最佳反应函数解法

( a 1 , a 2 , … , a n ) \left(a_{1}, a_{2}, \ldots, a_{n}\right) (a1,a2,,an) is a Nash equilibrium iff

a i ∈ B i ( a − i ) , a_{i} \in B_{i}\left(a_{-i}\right), \quad aiBi(ai), for all i . i . i.

零和博弈:唯一的纳什均衡 唯一的报酬

给定一个博弈一定存在混合策略的纳什均衡,不一定存在纳什均衡

Oligopoly

卖方寡头垄断

条件: 厂商少

战略互动的突出例子

古诺博弈:决定产量

反垄断的方法:

  1. 谈判,坦白
  2. 判断价格更接近垄断还是竞争

囚徒困境:

  1. 垄断并购
  2. 违约
  3. 长期博弈(无穷维度)

伯川德博弈:决定价格

Unit demand

n n n products: i = 1 , 2 , … , n i=1,2, \ldots, n i=1,2,,n
Values: ( v 1 , … , v n ) ∼ F × ⋯ × F . \left(v_{1}, \ldots, v_{n}\right) \sim F \times \cdots \times F . (v1,,vn)F××F.
Demand under prices p = ( p 1 , p 2 , … , p n ) p=\left(p_{1}, p_{2}, \ldots, p_{n}\right) p=(p1,p2,,pn) :
Q i ( p ) = Pr ⁡ ( v i − p i > v j − p j Q_{i}(p)=\operatorname{Pr}\left(v_{i}-p_{i}>v_{j}-p_{j}\right. Qi(p)=Pr(vipi>vjpj for all j ≠ i ) ⋅ 1 \left.j \neq i\right) \cdot 1 j=i)1
Profit:
π i ( p ) = ( p i − c i ) Q i ( p ) \pi_{i}(p)=\left(p_{i}-c_{i}\right) Q_{i}(p) πi(p)=(pici)Qi(p)
求纳什均衡和串谋时的决策

信息完全博弈

打牌 公开叫价 信号+博弈

威胁 承诺(信誉) 谈判(讨价还价) 报仇

完全信息博弈:采取行动时知道所有之前的行动

A tree T T T is a set of finite sequences such that
( a 1 , … , a k , a k + 1 , … , a m ) ∈ T ⟹ ( a 1 , … , a k ) ∈ T   f o r   a l l   k < m \left(a^{1}, \ldots, a^{k}, a^{k+1}, \ldots, a^{m}\right) \in T \Longrightarrow\left(a^{1}, \ldots, a^{k}\right) \in T~for~ all ~k<m (a1,,ak,ak+1,,am)T(a1,,ak)T for all k<m
Capture all possible sequences of actions

T的序列叫做历史

$ \emptyset \in T$:初始历史

N:终端历史

完全信息动态博弈包括:

  1. a set of players I = { 1 , 2 , … , n } I=\{1,2, \ldots, n\} I={1,2,,n},
  2. a tree T T T with terminal sequences N N N,
  3. a player function P : T \ N → I P: T \backslash N \rightarrow I P:T\NI,
  4. a payoff function u i : N → R u_{i}: N \rightarrow \mathbf{R} ui:NR for each i ∈ I i \in I iI.

Stackberg duopoly

行动的定义

Actions available to the player who moves after h h h :
A ( h ) ≡ { a ∣ ( h , a ) ∈ T } . A(h) \equiv\{a \mid(h, a) \in T\} . A(h){a(h,a)T}.
策略的定义

A strategy s i s_{i} si for player i i i specifies an action
s i ( h ) ∈ A ( h ) s_{i}(h) \in A(h) si(h)A(h)
for each h h h such that P ( h ) = i P(h)=i P(h)=i.

完整的终端历史 O ( s ) ≡ ( a 1 , a 2 , … , a m ) O(s) \equiv\left(a^{1}, a^{2}, \ldots, a^{m}\right) O(s)(a1,a2,,am)

A strategy profile s s s is a Nash equilibrium if
u i ( O ( s i , s − i ) ) ≥ u i ( O ( s i ′ , s − i ) ) u_{i}\left(O\left(s_{i}, s_{-i}\right)\right) \geq u_{i}\left(O\left(s_{i}^{\prime}, s_{-i}\right)\right) ui(O(si,si))ui(O(si,si))
for each i i i and each s i ′ s_{i}^{\prime} si.

无效威胁,不可置信威胁

动态博弈:子博弈精炼纳什均衡
max ⁡ q 1 ( 1 − q 1 − 1 − q 1 2 ) { s 1 ∗ = 1 2 s 2 ∗ = 1 − q 1 2 \begin{aligned} \max & q_{1}\left(1-q_{1}-\frac{1-q_1}{2}\right) \\ &\left\{\begin{array}{l} s_{1}^{*}=\frac{1}{2} \\ s_{2}^{*}=\frac{1-q_{1}}{2} \end{array}\right. \end{aligned} maxq1(1q121q1){s1=21s2=21q1
注意这个 s 2 ∗ s_2^* s2

子博弈精炼纳什均衡

s s s is a subgame perfect Nash equilibrium if
u i ( O h ( s ) ) ≥ u i ( O h ( s i ′ , s − i ) ) u_{i}\left(O_{h}(s)\right) \geq u_{i}\left(O_{h}\left(s_{i}^{\prime}, s_{-i}\right)\right) ui(Oh(s))ui(Oh(si,si))
for each i i i and each s i ′ s_{i}^{\prime} si and each h ∈ T \ N h \in T \backslash N hT\N.

完全信息动态博弈描述

  1. Players: I = { 1 , 2 , … , n } I=\{1,2, \ldots, n\} I={1,2,,n}
  2. Tree T h : = { h ′ ∣ ( h , h ′ ) ∈ T } T_{h}:=\left\{h^{\prime} \mid\left(h, h^{\prime}\right) \in T\right\} Th:={h(h,h)T}
  3. Terminal histories N h : = { h ′ ∣ ( h , h ′ ) ∈ N } N_{h}:=\left\{h^{\prime} \mid\left(h, h^{\prime}\right) \in N\right\} Nh:={h(h,h)N},
  4. Player function P h ( h ′ ) : = P ( h , h ′ ) P_{h}\left(h^{\prime}\right):=P\left(h, h^{\prime}\right) Ph(h):=P(h,h),
  5. Payoff function u h , i ( h ′ ) : = u i ( h , h ′ ) u_{h, i}\left(h^{\prime}\right):=u_{i}\left(h, h^{\prime}\right) uh,i(h):=ui(h,h).
  6. Induced strategy: s h , i ( h ′ ) : = s i ( h , h ′ ) s_{h, i}\left(h^{\prime}\right):=s_{i}\left(h, h^{\prime}\right) sh,i(h):=si(h,h).

backward induction:后退归纳法

无穷期博弈表示:

Let A = { ( C , C ) , ( C , D ) , ( D , C ) , ( D , D ) } A=\{(C, C),(C, D),(D, C),(D, D)\} A={(C,C),(C,D),(D,C),(D,D)}.

T = { ∅ } ∪ A ∪ A 2 ∪ ⋯ ∪ A ∞ . T=\{\emptyset\} \cup A \cup A^{2} \cup \cdots \cup A^{\infty} . T={}AA2A.
N = A ∞ . N=A^{\infty} . N=A.
P ( h ) = { 1 , 2 } P(h)=\{1,2\} P(h)={1,2} for all h ∈ T / N . h \in T / N . hT/N.

Let
r 1 ( C , C ) = 10 , r 1 ( C , D ) = 0 r 1 ( D , C ) = 15 , r 1 ( D , D ) = 5 \begin{aligned} r_{1}(C, C) &=10, r_{1}(C, D)=0 \\ r_{1}(D, C) &=15, r_{1}(D, D)=5 \end{aligned} r1(C,C)r1(D,C)=10,r1(C,D)=0=15,r1(D,D)=5
Then
u 1 ( a 1 , a 2 , … ) = r 1 ( a 1 ) + δ r 1 ( a 2 ) + δ 2 r 1 ( a 3 ) + ⋯   . u_{1}\left(a^{1}, a^{2}, \ldots\right)=r_{1}\left(a^{1}\right)+\delta r_{1}\left(a^{2}\right)+\delta^{2} r_{1}\left(a^{3}\right)+\cdots . u1(a1,a2,)=r1(a1)+δr1(a2)+δ2r1(a3)+.

长期关系

Tit or tat ?

以牙还牙

Grim Trigger

冷酷策略

严格报复策略是纳什均衡,子博弈精炼纳什均衡

当历史有D无D,都为纳什均衡

取决于贴现KaTeX parse error: Undefined control sequence: \var at position 1: \̲v̲a̲r̲和明天还会玩的概率

参与人变化比如家族或者惩罚一村的人 信息传递

不完全信息动态博弈

信息不对称

炸金花博弈描述

Two players: 1 and 2 .
Game tree: T = { ∅ , ( F ) , ( R ) , ( R , F ) , ( R , C ) } T=\{\emptyset,(F),(R),(R, F),(R, C)\} T={,(F),(R),(R,F),(R,C)}.
Player function: P ( ∅ ) = 1 , P ( ( R ) ) = 2 P(\emptyset)=1, P((R))=2 P()=1,P((R))=2.
Uncertainty: Θ = Θ 1 = { \Theta=\Theta_{1}=\{ Θ=Θ1={ Ace, King } \} };
Pr ⁡ ( θ = \operatorname{Pr}(\theta= Pr(θ= Ace ) = 0.5 )=0.5 )=0.5.
Payoff: u 1 ( ( F ) , θ ) = − 1 ; u 1 ( ( R , F ) , θ ) = 1 , … u_{1}((F), \theta)=-1 ; u_{1}((R, F), \theta)=1, \ldots u1((F),θ)=1;u1((R,F),θ)=1,

不完全信息博弈策略: 在每个可能做决策的地方对每个可能的你做一个决策行动

不完全信息是对方,别把自己给绕晕了!!!!

Given ( σ 1 , σ 2 , b ) : \left(\sigma_{1}, \sigma_{2}, b\right): (σ1,σ2,b):
E [ u 1 ( m 1 , σ 2 , θ ) ] = u 1 ( m 1 , a 1 , θ ) σ 2 + u 1 ( m 1 , a 2 , θ ) ( 1 − σ 2 ) \begin{aligned} E\left[u_{1}\left(m_{1}, \sigma_{2}, \theta\right)\right] &= u_{1}\left(m_{1}, a_{1}, \theta\right) \sigma_{2}+u_{1}\left(m_{1}, a_{2}, \theta\right)\left(1-\sigma_{2}\right) \end{aligned} E[u1(m1,σ2,θ)]=u1(m1,a1,θ)σ2+u1(m1,a2,θ)(1σ2)
E [ u 2 ( m 1 , a , θ ) ∣ b ] = u 2 ( m 1 , a , t 1 ) b + u 2 ( m 1 , a , t 2 ) ( 1 − b ) \begin{aligned} &E\left[u_{2}\left(m_{1}, a, \theta\right) \mid b\right]= u_{2}\left(m_{1}, a, t_{1}\right) b+u_{2}\left(m_{1}, a, t_{2}\right)(1-b) \end{aligned} E[u2(m1,a,θ)b]=u2(m1,a,t1)b+u2(m1,a,t2)(1b)

贝叶斯公式
b = σ 1 ( t 1 ) γ σ 1 ( t 1 ) γ + σ 1 ( t 2 ) ( 1 − γ ) b=\frac{\sigma_{1}\left(t_{1}\right) \gamma}{\sigma_{1}\left(t_{1}\right) \gamma+\sigma_{1}\left(t_{2}\right)(1-\gamma)} b=σ1(t1)γ+σ1(t2)(1γ)σ1(t1)γ
Expected payoff:
E [ u i ( a i , s j ( θ j ) , θ i , θ j ) ] = ∑ θ j ∈ Θ j u i ( a i , s j ( θ j ) , θ i , θ j ) f j ( θ j ) E\left[u_{i}\left(a_{i}, s_{j}\left(\theta_{j}\right), \theta_{i}, \theta_{j}\right)\right]=\sum_{\theta_{j} \in \Theta_{j}} u_{i}\left(a_{i}, s_{j}\left(\theta_{j}\right), \theta_{i}, \theta_{j}\right) f_{j}\left(\theta_{j}\right) E[ui(ai,sj(θj),θi,θj)]=θjΘjui(ai,sj(θj),θi,θj)fj(θj)
Expected payoff:
E [ u i ( a i , s j ( θ j ) , θ ) ] = ∫ θ j ∈ Θ j u i ( a i , s j ( θ j ) , θ ) f j ( θ j ) d θ j E\left[u_{i}\left(a_{i}, s_{j}\left(\theta_{j}\right), \theta\right)\right]=\int_{\theta_{j} \in \Theta_{j}} u_{i}\left(a_{i}, s_{j}\left(\theta_{j}\right), \theta\right) f_{j}\left(\theta_{j}\right) \mathrm{d} \theta_{\mathrm{j}} E[ui(ai,sj(θj),θ)]=θjΘjui(ai,sj(θj),θ)fj(θj)dθj
s = ( s 1 , s 2 ) s=\left(s_{1}, s_{2}\right) s=(s1,s2) is a Bayesian equilibrium if
E [ u i ( s i ( θ i ) , s j ( θ j ) , θ ) ] ≥ E [ u i ( a i , s j ( θ j ) , θ ) ] E\left[u_{i}\left(s_{i}\left(\theta_{i}\right), s_{j}\left(\theta_{j}\right), \theta\right)\right] \geq E\left[u_{i}\left(a_{i}, s_{j}\left(\theta_{j}\right), \theta\right)\right] E[ui(si(θi),sj(θj),θ)]E[ui(ai,sj(θj),θ)]
for each a i a_{i} ai, each θ i \theta_{i} θi, and each i i i.

s i s_{i} si is a dominant strategy if
E [ u i ( s i ( θ i ) , s j ( θ j ) , θ ) ] ≥ E [ u i ( a i , s j ( θ j ) , θ ) ] , E\left[u_{i}\left(s_{i}\left(\theta_{i}\right), s_{j}\left(\theta_{j}\right), \theta\right)\right] \geq E\left[u_{i}\left(a_{i}, s_{j}\left(\theta_{j}\right), \theta\right)\right], E[ui(si(θi),sj(θj),θ)]E[ui(ai,sj(θj),θ)],
for each a i a_{i} ai, each θ i \theta_{i} θi, and each s j s_{j} sj.

贝叶斯均衡

Perfect Bayesian equilibrium Defifinition

( σ 1 , σ 2 , b ) \left(\sigma_{1}, \sigma_{2}, b\right) (σ1,σ2,b) is a perfect Bayesian equilibrium if:

  1. if σ 1 ( θ ) > 0 \sigma_{1}(\theta)>0 σ1(θ)>0, then
    E [ u 1 ( m 1 , σ 2 , θ ) ] ≥ u 1 ( m 2 , θ ) ; E\left[u_{1}\left(m_{1}, \sigma_{2}, \theta\right)\right] \geq u_{1}\left(m_{2}, \theta\right) ; E[u1(m1,σ2,θ)]u1(m2,θ);
    if σ 1 ( θ ) < 1 \sigma_{1}(\theta)<1 σ1(θ)<1, then
    E [ u 1 ( m 1 , σ 2 , θ ) ] ≤ u 1 ( m 2 , θ ) ; E\left[u_{1}\left(m_{1}, \sigma_{2}, \theta\right)\right] \leq u_{1}\left(m_{2}, \theta\right) ; E[u1(m1,σ2,θ)]u1(m2,θ);

  2. if σ 2 > 0 \sigma_{2}>0 σ2>0, then
    E [ u 2 ( m 1 , a 1 , θ ) ∣ b ] ≥ E [ u 2 ( m 1 , a 2 , θ ) ∣ b ] ; E\left[u_{2}\left(m_{1}, a_{1}, \theta\right) \mid b\right] \geq E\left[u_{2}\left(m_{1}, a_{2}, \theta\right) \mid b\right] ; E[u2(m1,a1,θ)b]E[u2(m1,a2,θ)b];
    if σ 2 < 1 \sigma_{2}<1 σ2<1, then
    E [ u 2 ( m 1 , a 1 , θ ) ∣ b ] ≤ E [ u 2 ( m 1 , a 2 , θ ) ∣ b ] ; E\left[u_{2}\left(m_{1}, a_{1}, \theta\right) \mid b\right] \leq E\left[u_{2}\left(m_{1}, a_{2}, \theta\right) \mid b\right] ; E[u2(m1,a1,θ)b]E[u2(m1,a2,θ)b];

  3. if σ 1 ( t 1 ) > 0 \sigma_{1}\left(t_{1}\right)>0 σ1(t1)>0 or σ 1 ( t 2 ) > 0 \sigma_{1}\left(t_{2}\right)>0 σ1(t2)>0, then

b = σ 1 ( t 1 ) γ σ 1 ( t 1 ) γ + σ 1 ( t 2 ) ( 1 − γ ) . b=\frac{\sigma_{1}\left(t_{1}\right) \gamma}{\sigma_{1}\left(t_{1}\right) \gamma+\sigma_{1}\left(t_{2}\right)(1-\gamma)} . b=σ1(t1)γ+σ1(t2)(1γ)σ1(t1)γ.

拍卖理论

Auctions

第二价格拍卖

价高者付第二高的价格

第一价格拍卖

价高者付第一高的价格

Players: buyers 1 and 2. 2 . 2.
Action=bid: b i ∈ [ 0 , ∞ ) b_{i} \in[0, \infty) bi[0,).
Uncertainty: Θ 1 = Θ 2 = [ 0 , 1 ] ; v i ∼ U [ 0 , 1 ] \Theta_{1}=\Theta_{2}=[0,1] ; v_{i} \sim U[0,1] Θ1=Θ2=[0,1];viU[0,1].
Payoff: u i ( b i , b j , v i ) = { v i − b i ,  if  b i > b j ; 1 2 ( v i − b i ) ,  if  b i = b j ; 0 ,  if  b i < b j u_{i}\left(b_{i}, b_{j}, v_{i}\right)= \begin{cases}v_{i}-b_{i}, & \text { if } b_{i}>b_{j} ; \\ \frac{1}{2}\left(v_{i}-b_{i}\right), & \text { if } b_{i}=b_{j} ; \\ 0, & \text { if } b_{i}<b_{j}\end{cases} ui(bi,bj,vi)=vibi,21(vibi),0, if bi>bj; if bi=bj; if bi<bj

Second-price auction:
∫ 0 1 ∫ 0 1 min ⁡ { v 1 , v 2 } d v 1   d v 2 = 1 3 . \int_{0}^{1} \int_{0}^{1} \min \left\{v_{1}, v_{2}\right\} \mathrm{d} v_{1} \mathrm{~d} v_{2}=\frac{1}{3} . 0101min{v1,v2}dv1 dv2=31.
First-price auction:
∫ 0 1 ∫ 0 1 max ⁡ { v 1 2 , v 2 2 } d v 1   d v 2 = 1 3 . \int_{0}^{1} \int_{0}^{1} \max \left\{\frac{v_{1}}{2}, \frac{v_{2}}{2}\right\} \mathrm{d} v_{1} \mathrm{~d} v_{2}=\frac{1}{3} . 0101max{2v1,2v2}dv1 dv2=31.

signaling

说真话要付出代价才会让人相信

分离均衡(Separating equilibrium)

可以完全分清楚类型

混同均衡(Pooling equilibrium)

没有信息的更新

半分离均衡(Semieparating equilibrium)

有一定的信息更新,可以分清楚一部分

有无信息的更新

完美贝叶斯博弈均衡时一个解概念

混同、分离、办分离均衡都属于完美贝叶斯博弈均衡的一种

总结:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gfiKtY5F-1641462637615)(https://gitee.com/zhang-yixin/markdown-drawing-bed/raw/master/img//202201041219492.png)]

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值