AI/大模型-机器人
1. 大语言模型(LLM)在机器人领域的应用
多模态大语言模型(LLM)正逐步被应用于机器人控制和操作任务中。例如,ManipLLM是一种结合多模态输入的大语言模型,能够实现复杂的物体操作任务。这种模型通过学习视觉、语言和物理交互的结合,推动机器人在动态环境中的自主决策能力。
这种技术的本质在于,通过LLM与机器人感知能力的结合,提升了机器人对复杂操作场景的理解和反应速度,进一步缩小了机器人与人类操作员在物体操作上的差距。
2. 移动机器人(AMRs)的扩展应用
到2024年,移动机器人(AMRs)已从早期的实验性应用转向规模化部署,尤其是在仓储物流、制造和农业等领域。全球移动机器人市场预计将在2028年达到406亿美元,显示出这一技术的巨大增长潜力。这种机器人的核心技术突破在于其感知能力和数据处理能力的提升,能够更好地应对非结构化环境的挑战。这意味着,机器人不仅仅局限于工业生产,还能够在户外环境中执行任务,例如农场的作物运输和草坪修剪等。
3. 协作机器人(Cobots)的发展
协作机器人(Cobots)已成为工业和服务领域的重要组成部分,尤其是在2024年,随着传感器和视觉技术的进步,这类机器人正变得更加智能和安全。协作机器人能够实时感知环境变化,与人类操作员进行更加安全、灵活的合作。未来几年,协作机器人的应用领域将逐步从工业制造扩展到医疗、服务和家居辅助等场景