Rethinking the trigger of backdoor attack

Rethinking the trigger of backdoor attack

https://arxiv.org/abs/2004.04692

本文是关于后门攻击的论文。本文指出目前的大多数后门攻击的触发集都是属于静态触发集(static trigger),也就是说触发集在训练过程和测试过程的appearance和located都是相同的,也就是指,触发模式都是相同的。
这说明一个问题,触发集的鲁棒性会比正常样本差很多。
可以这样理解,训练过程中样本的数量会很大程度上影响训练的效果。后门样本只有一个形式,也就是其训练数据会很少,导致其泛化性能很差,因为没有足够的数据量使其更好地拟合数据。
对输入的触发样本的变换,能够比较轻易地破坏后门攻击。
本文基于这种观点,提出了后门样本的攻击——一种空间转换的方式。想法很简单,做法也很简单。

后门攻击

后门攻击的步骤可以表示为两个步骤:
1)生成触发样本及对应的触发标签, ( x p o i s o n e d , y t a r g e t ) (x_{poisoned},y_{target}) (xpoisoned,ytarget)
2)训练。同时使用良性数据和触发集的数据。

x p o i s o n e d x_{poisoned} xpoisoned的生成可以形式化为:
x p o i s o n e d = S ( x ; x t r i g g e r ) = ( 1 − α ) ⊗ x + α ⊗ x t r i g g e r x_{poisoned}=S(x;x_{trigger})=(1-\alpha)\otimes x+\alpha \otimes x_{trigger} xpoisoned=S(x;xtrigger)=(1α)x+αxtrigger
其中:
α ∈ [ 0 , 1 ] C × W × H \alpha \in [0,1]^{C\times W\times H} α[0,1]C×W×H
训练就是正常的训练过程,普普通通的交叉熵函数。

不同特征的影响

本文将触发模式的特征分为位置和外观。
首先是位置,下图表示触发pattern位于不同位置时候的攻击成功率ASR(attack succes rate),可以看出位置的细微变化就能够极大地影响到ASR。
在这里插入图片描述
另一种变换就是外观上的差异。初始嵌入的后门模式是128的value,value的取值范围是0~255.这边说明图像的外观变换能够一定程度上影响攻击成功率,但是又不是所有的变化都能够造成影响,这也是一个值得研究的点。
在这里插入图片描述

后门防御

Q:能否通过这种敏感性,来防御静态触发集的后门攻击?
A:可以。这种防御需要移动或者变换后门的trigger。但是实际场景中,用户可能并不知道trigger的信息,无法精确操作。因此提出了一种基于转换的防御方式,很暴力啊,就是直接变换整个图像。
比如对整个图像进行翻转或者缩放。

后门防御的攻击

为了增强水印的鲁棒性,很直接的方法就是数据增强。
在训练过程中自己移动trigger的位置,自己对其增加噪声,自己缩放。把对手要走的路走完,那么对手就无路可走了。
那么问题来了,对手走的是什么路?
所以说,提高trigger的鲁棒性的关键就是,如何确定防御者的变换方式和相应的参数。
解决方案是:多做变换。因为并不能确定。当然因为变换存在的可能性是无穷,本文定义了一个变换的集合,以及对应的变换的参数范围,然后使用一种基于抽样的方式来进行变换参数组合。
在这里插入图片描述

后门防御的攻击的防御

啊,这个本文没有。

实验结果

从图5可以看出。在standard attack和enhanced attack之间的差异。
明显来说,enhanced attack 更加地抵抗扰动。
在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Inception 架构是一种用于计算机视觉的神经网络架构,它通过使用不同尺寸的卷积核来捕捉图像中的不同级别特征。近年来,研究者们对 Inception 架构进行了重新思考,提出了许多改进版本,如 Inception-v2 和 Inception-v3。这些改进版本通过更深层次的网络结构、更高效的卷积层、更强大的正则化方法等来增强模型的性能。 ### 回答2: "重新思考计算机视觉中的Inception架构"是指对计算机视觉中的Inception架构进行反思和重新设计的过程。 在计算机视觉中,深度学习网络被广泛应用于图像分类、物体检测和语义分割等任务。Inception架构是一种流行的深度学习架构之一,它的特点是使用了一系列不同尺寸的卷积核和Inception模块,以提取不同尺度下的图像特征。 然而,随着计算机视觉任务的不断发展和挑战的出现,人们开始重新思考和改进Inception架构。对Inception架构的重新思考主要包括以下几个方面: 首先,针对Inception架构中的参数数量过多和计算复杂度高的问题,人们提出了一些改进方法。例如,通过降低Inception模块中卷积核的维度和参数数量,可以减少计算量,提高网络的训练和推理效率。 其次,人们提出了一些新的模块和网络结构,以解决Inception架构在某些任务上的性能限制。例如,ResNet和DenseNet等网络结构通过引入残差连接和稠密连接,解决了深度网络中的梯度消失和信息丢失问题。 此外,人们还关注如何将Inception架构与其他架构进行融合,以进一步提升计算机视觉任务的性能。例如,人们将Inception架构与注意力机制相结合,以提高目标检测和图像分割的准确性。 总之,"重新思考计算机视觉中的Inception架构"是一个不断演进的过程。通过反思和优化Inception架构,人们可以提高计算机视觉任务的性能、准确性和效率,推动计算机视觉领域的发展。 ### 回答3: 重新思考计算机视觉中的初始架构(rethinking the inception architecture for computer vision)是指对计算机视觉模型中的初始网络架构进行重新思考和改进。 计算机视觉是人工智能领域中的一个重要分支,它致力于让计算机能够像人一样理解和处理图像和视频。而计算机视觉模型的架构对于模型的性能和效果具有很大的影响。 Inception架构是一种经典的计算机视觉模型架构,最早由谷歌在2014年提出。它通过使用多尺度的卷积层和并行结构来提高模型的性能和效果。然而,随着技术的发展和需求的变化,原始的Inception架构可能存在一些限制和缺陷。 重新思考Inception架构意味着我们需要针对当前的计算机视觉任务和要求,重新设计和改进Inception架构。有几个方面可以考虑: 首先,我们可以通过引入更先进的卷积技术和结构来改善模型的性能。例如,可以使用Dilated Convolution(空洞卷积)来增加感受野,或者使用Depthwise Separable Convolution(分离卷积)来减少参数量和计算量。 其次,我们可以将其他经典和有效的架构和思想与Inception架构相结合,以进一步提升性能。例如,可以引入残差连接(Residual Connection)来加快训练速度和提高模型的泛化能力。 此外,我们还可以针对具体的计算机视觉任务,对Inception架构进行特定的优化。例如,对于目标检测任务,可以加入适应性池化层(Adaptive Pooling Layer)来获得更好的位置和尺度信息。 总之,重新思考Inception架构是一个不断改进和优化计算机视觉模型的过程。通过结合新的技术、思想和任务需求,我们可以进一步提高计算机视觉模型的性能和效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值