约束多目标方法(9)——特定问题特定解法

文章介绍了多种解决约束多目标优化问题的算法,包括结合Kriging模型的替代物辅助方法、代理辅助进化策略、人工免疫系统模型、基于超矩形搜索的PSO变体、CHT杂交技术、连续盒型算法、水循环算法、免疫优化法以及先锋选择策略,这些方法针对不同问题特性设计,旨在有效处理计算量大和复杂约束的优化挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本次介绍的约束多目标方法都是一些无法针对约束处理技术进行归类的一些方法,大部分都是针对问题特点所设计出的算法。

算法逐一介绍

1、Singh等将替代物辅助方法整合到SA中以处理CMOPs。基于代理模型的优化方法可以减少计算量大的仿真次数。将Kriging模型与改进的多目标概率和可行性概率相结合来求解CMOPs。

2、Datta和Regis提出了一种代理辅助进化策略来解决具有昂贵的黑箱不等式约束的cops。

3、Zhang和Qian采用人工免疫系统模型求解时变环境下的非线性约束多目标问题。

4、Wei和Wang等在超矩形搜索的基础上提出了一种PSO变体,可以预测下一个时间步的最优解。

5、Qu和Suganthan提出将多个CHT杂交来解决CMOPs ,因为单个CHT不可能在每个问题上都优于其他CHT。

6、Zapotecas-Martínez和Coello Coello提出了一种连续盒型cops算法,该算法采用非线性单纯形搜索方案获得PS。

7、Sadollah等使用水循环算法求解cops,其中使用一个存档保存得到的非支配解。

8、Qian等基于生物免疫系统设计了一种求解CMOPs的免疫优化方法。

9、Yuan等引入了一种基于指标的CMOPs CHT,以指导人群统一探索有潜力的领域。

10、Li等设计了一种先锋选择策略,先锋个体不考虑约束条件,逐步减少先锋个体的比例,以获得均匀分布的CPF。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值