约束多目标方法(5)——多种群协同优化

文章介绍了协同优化方法在解决CMP问题上的发展,包括将CMP问题转化为多目标或两阶段问题,使用协同进化策略增强种群探索能力。提到了多种协同优化算法,如基于分解和存档的方法,以及不同种群间的互动策略,旨在提高约束处理效率和保持解的分布与多样性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

协同优化

为了更有效地求解cmp问题,许多研究者将cmp问题转化为其他问题,如将cmp问题转化为协同优化问题或两阶段优化问题。在转换之后,一些有前景的算子,如协同进化,可以帮助种群更好地探索搜索空间,发现一些新的和潜在的信息,最终获得完整的CPF。这期先向大家介绍多种群协同优化的方法。

相比与传统的罚函数法、多目标法,协同优化是较为新的方法、最早提出在2003年,也是近几年在约束处理中较为流行的方法。

近年算法整理

1、2003年Chafekar等将CMOP转化为多个单目标优化问题,其中实现了多个遗传算法,每个遗传算法优化一个目标,然后交换目标信息。

2Wang等提出了一种合作差分进化(DE)框架,同样使用m个子种群,每个子种群优化一个带有约束的目标,即单约束优化。此外,使用存档种群来保存获得的约束非支配解以接近CPF。

3、Liu和Wang提出了一种基于分解和临时存档CMOEA,将一个CMOEA分解为若干个子问题,每个子问题都有自己的子种群和临时存档。然后,通过协同进化策略对每个子问题进行优化。

4、Liu和Wang在基于分解和临时存档CMOEA的基础上提出了一种基于边界搜索和存档的约束处理方案,该方案将一个CMOP分解为若干个子问题,每个子问题都有自己的存档。构造了边界搜索策略,提高了算法的效率。

5、Yang等为了保持解的分布,通过对目标空间进行划分,将CMOP分解为多个子问题,并使用多个cht求解优化问题。

6、Liu等将CMOP问题转化为双种群优化问题,其中一个种群只优化约束,另一个种群专注于优化目标。同时,这两个群体之间存在着信息的相互作用和知识的传递。

7、Tian等提出了一种求解cmpp的协同进化框架CCMO,其中一个种群使用CCMO来求解原cmpp,即搜索CPF,而另一个种群忽略约束来寻找UPF。这两个种群在解决CMOPs时相互帮助。

8、Li等设计了一种双档案进化算法(C-TAEA),一种是面向收敛的档案(CA),目的是沿着PF3推进种群,另一种是面向多样性的档案(DA),用于探索CA的未开发区域并保持种群多样性。

9、Wang等采用推进种群和正常种群两个种群设计了一种合作MOEA,推进种群注重收敛,前期不考虑约束,后期只考虑约束。正态总体搜索整个CPF,优先考虑总体的可行性和多样性。

10、Liu等人设计了一种双向协同进化算法,其中主种群和存档种群同时使用。主要种群保持可行性,从可行侧向CPF移动;档案种群利用角度信息保持种群多样性,从不可行侧向CPF逼近。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值