1034. 边界着色
给你一个大小为 m x n 的整数矩阵 grid ,表示一个网格。另给你三个整数 row、col 和 color 。网格中的每个值表示该位置处的网格块的颜色。
当两个网格块的颜色相同,而且在四个方向中任意一个方向上相邻时,它们属于同一 连通分量 。
连通分量的边界 是指连通分量中的所有与不在分量中的网格块相邻(四个方向上)的所有网格块,或者在网格的边界上(第一行/列或最后一行/列)的所有网格块。
请你使用指定颜色 color 为所有包含网格块 grid[row][col] 的 连通分量的边界 进行着色,并返回最终的网格 grid 。
示例 1:
输入:grid = [[1,1],[1,2]], row = 0, col = 0, color = 3
输出:[[3,3],[3,2]]
示例 2:
输入:grid = [[1,2,2],[2,3,2]], row = 0, col = 1, color = 3
输出:[[1,3,3],[2,3,3]]
示例 3:
输入:grid = [[1,1,1],[1,1,1],[1,1,1]], row = 1, col = 1, color = 2
输出:[[2,2,2],[2,1,2],[2,2,2]]
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 50
1 <= grid[i][j], color <= 1000
0 <= row < m
0 <= col < n
class Solution {
int change_row[]={0,0,1,-1};
int change_col[]={1,-1,0,0};
public int[][] colorBorder(int[][] grid, int row, int col, int color) {
int m=grid.length;
int n=grid[0].length;
int visit[][]=new int[m][n];
int before_color=grid[row][col];
Stack<int[]> stack=new Stack<>();
int temp_first[]={row,col};
visit[row][col]=1;
stack.push(temp_first);
Stack<int[]> stack_2=new Stack<>();
while(!stack.isEmpty()){
int temp[]=stack.pop();
boolean flag=false;
for(int i=0;i<4;i++){
int newx=temp[0]+change_row[i];
int newy=temp[1]+change_col[i];
if(newx>=m||newy>=n||newx<0||newy<0){ //是最外围
flag=true;
continue;
}
if(grid[newx][newy]!=before_color){
flag=true;
continue;
}
if(grid[newx][newy]==before_color&&visit[newx][newy]==0){
int newtemp[]={newx,newy};
stack.push(newtemp);
visit[newx][newy]=1;
}
}
if(flag){ //是边界
stack_2.push(temp);
}
}
while(!stack_2.isEmpty()){
int temp[]=stack_2.pop();
grid[temp[0]][temp[1]]=color;
}
return grid;
}
}